
Noname manuscript No.
(will be inserted by the editor)

The MetaCoq Project1

Matthieu Sozeau, Abhishek Anand, Simon2

Boulier, Cyril Cohen, Yannick Forster, Fabian3

Kunze, Gregory Malecha, Nicolas Tabareau4

and Théo Winterhalter5

6

Received: date / Accepted: date7

Abstract The MetaCoq project1 aims to provide a certified meta-programming envi-8

ronment in Coq. It builds on Template-Coq, a plugin for Coq originally implemented9

by Malecha (2014), which provided a reifier for Coq terms and global declarations,10

as represented in the Coq kernel, as well as a denotation command. Recently, it was11

used in the CertiCoq certified compiler project (Anand et al., 2017), as its front-end12

language, to derive parametricity properties (Anand and Morrisett, 2018). However,13

the syntax lacked semantics, be it typing semantics or operational semantics, which14

should reflect, as formal specifications in Coq, the semantics of Coq’s type theory15

itself. The tool was also rather bare bones, providing only rudimentary quoting and16

unquoting commands. We generalize it to handle the entire Polymorphic Calculus of17

Cumulative Inductive Constructions (pCUIC), as implemented by Coq, including the18

kernel’s declaration structures for definitions and inductives, and implement a monad19

for general manipulation of Coq’s logical environment. We demonstrate how this setup20

allows Coq users to define many kinds of general purpose plugins, whose correctness can21

be readily proved in the system itself, and that can be run efficiently after extraction.22

We give a few examples of implemented plugins, including a parametricity translation23

and a certifying extraction to call-by-value λ-calculus. We also advocate the use of24

MetaCoq as a foundation for higher-level tools.25

M. Sozeau
Pi.R2 Project-Team, Inria Paris and IRIF, France

S. Boulier, N. Tabareau, T. Winterhalter
Gallinette Project-Team, Inria Nantes, France

C. Cohen
Université Côte d’Azur, Inria, France

Y. Forster, F. Kunze
Saarland University, Germany

A. Anand, G. Malecha
BedRock Systems, USA

1 https://metacoq.github.io/metacoq

https://metacoq.github.io/metacoq

2 Sozeau et al.

Contents1

1 Introduction . 22

1.1 A First Example: A Plugin to Add a Constructor 33

1.2 Departures from Coq theory . 54

1.3 Outline of the Paper . 55

2 A Formal Specification of Coq . 66

2.1 Reification of Terms . 67

2.2 Reification of environment . 98

2.3 Typing judgements . 109

2.4 Conversion, Cumulativity and Reduction . 1810

2.5 Typing environments . 2111

2.6 Universes . 2412

2.7 Towards bootstrapping Coq . 2613

3 The Template-Coq Plugin . 2714

3.1 Basic commands . 2715

3.2 Reification of Coq Commands . 2816

4 Writing Coq plugins in Coq . 3117

4.1 A Toy Example: A Plugin to Add a Constructor 3118

4.2 A Certified Version of the tauto Tactic . 3319

4.3 The Program Translations Plugin . 3820

4.4 Extraction to lambda-calculus . 4521

5 Running plugins natively in OCaml . 4822

6 Related Work and Future Work . 5123

1 Introduction24

Meta-programming is the art of writing programs (in a meta-language) that produce25

or manipulate programs (written in an object language). In the setting of dependent26

type theory, the expressivity of the language allows the case were the meta and object27

languages are actually the same, accounting for well-typedness. This idea has been28

pursued in the work on inductive-recursive (IR) and quotient inductive-inductive types29

(QIIT) in Agda to reflect a syntactic model of a dependently-typed language within30

another one (Chapman, 2009; Altenkirch and Kaposi, 2016). These term encodings31

include type-correcteness internally by considering only well-typed terms of the syntax,32

i.e., derivations. However, the use of IR or QIITs complicates considerably the meta-33

theory of the meta-language which makes it difficult to coincide with the object language34

represented by an inductive type. More problematically in practice, the unification of the35

syntax and its well-typedness makes it very difficult to use because any function from36

the syntax can be built only at the price of a proof that it respects typing, conversion37

or any other features described by the intrinsically typed syntax right away.38

Other works have taken advantage of the power of dependent types to do meta-39

programming in a more progressive manner, by first defining the syntax of terms and40

types; and then defining out of it the notions of reduction, conversion and typing41

derivation (Devriese and Piessens, 2013; Van der Walt and Swierstra, 2013) (the42

introduction of (Devriese and Piessens, 2013) provides a comprehensive review of43

related work in this area). This can be seen as a type-theoretic version of the functional44

programming language designs such as Template Haskell (Sheard and Jones, 2002a)45

or MetaML (Taha and Sheard, 1997). This is also the approach taken by Malecha in46

his thesis (Malecha, 2014) where he introduced Template-Coq, a plugin which defines47

a correspondence—using quoting and unquoting functions—between Coq kernel terms48

and inhabitants of an inductive type representing internally the syntax of the calculus49

The MetaCoq Project 3

of inductive constructions (CIC), as implemented in Coq. It becomes thus possible to1

define programs in Coq that manipulate the representation of Coq terms and reify2

them as functions on Coq terms. Recently, its use was extended for the needs of the3

CertiCoq certified compiler project (Anand et al., 2017), which uses it as its front-end4

language. It was also used by Anand and Morrisett (2018) to formalize a modified5

parametricity translation, and to extract Coq terms to a CBV λ-calculus (Forster6

and Kunze, 2016). All of these translations however lacked any means to talk about7

the semantics of the reified programs, only syntax was provided by Template-Coq.8

This is an issue for CertiCoq for example where both a non-deterministic small step9

semantics and a deterministic call-by-value big step semantics for CIC terms had to be10

defined and preserved by the compiler, without an “official” specification to refer to.11

The MetaCoq project described in this paper remedies this situation by providing12

a formal semantics of Coq’s type theory, that can independently be refined and studied.13

The advantage of having a very concrete untyped description of Coq terms (as opposed14

to IR or QIITs definitions) together with an explicit type checker is that the extracted15

type-checking algorithm gives rise to an OCaml program that can directly be used to16

type-check Coq kernel terms. This opens a way to a concrete solution to bootstrap17

Coq by implementing the Coq kernel in Coq. However, a complete reification of CIC18

terms and a definition of the checker are not enough to provide a meta-programming19

framework in which Coq plugins could be implemented. One needs access to Coq20

logical environments. We achieve this using the TemplateMonad, which reifies Coq general21

commands, such as lookups and declarations of constants and inductive types.22

As far as we know this is the only reflection framework in a dependently-typed23

language allowing such manipulations of terms and datatypes, thanks to the relatively24

concise representation of terms and inductive families in CIC. Compared to the MTac25

project (Ziliani et al., 2015), Idris’s reflection framework (Christiansen and Brady,26

2016), Lean’s metaprogramming facilities (Ebner et al., 2017), or Agda’s reflection27

framework (Van der Walt and Swierstra, 2013), our ultimate goal is not to interface28

with Coq’s unification and type-checking algorithms, but to provide a self-hosted,29

bootstrappable and verifiable implementation of these algorithms. One could however30

also build higher level primitives like in Idris or Agda on top of the term language to31

facilitate the construction of terms and tactics. Here we rather focus on giving a full32

typing specification to the language. This opens the possibility to verify the kernel’s33

implementation, a problem tackled by Barras (1999) using set-theoretic models. In34

addition, we advocate for the use of MetaCoq as a foundation to build higher-level35

tools. For example, translations, boilerplate generators, domain-specific proof languages,36

or even general purpose tactic languages.37

Terminologically, we reserve the use of the name Template-Coq to denote reifica-38

tion of the internal syntax and logical environment of Coq, and also for the reification39

of the type-checking algorithm. We otherwise use the name MetaCoq when talking40

about definition of the formal semantics and certification of the algorithms.41

1.1 A First Example: A Plugin to Add a Constructor42

Before diving into the specification of MetaCoq, let us illustrate how it can be used43

in practice on a simple example of plugin (this example is treated in more details in44

Section 4.1).45

4 Sozeau et al.

Given an inductive type I without indices, we want to declare a new inductive type1

I’ which corresponds to I plus one more constructor.2

For instance, suppose that we have a syntax for lambda calculus:3

Inductive tm : Set B
| var : nat → tm
| lam : tm → tm
| app : tm → tm → tm.

In some part of our development, we might want to consider a variation of tm with a4

new constructor, e.g., a “let in” constructor. Our plugin will allow to declare tm’ by5

simply specifying the additional constructor:6

Run TemplateProgram (add_constructor <% tm %> "letin"
<% fun tm’ ⇒ tm’ → tm’ → tm’ %>).

This command has the same effect as declaring the inductive tm’ by hand:7

Inductive tm’ : Set B
| var’ : nat → tm’
| lam’ : tm’ → tm’
| app’ : tm’ → tm’ → tm’
| letin : tm’ → tm’ → tm’.

but with the benefit that if tm is changed, for instance by annotating the lambda or8

adding one new constructor, then tm’ is automatically changed accordingly.9

It is not possible to define such a transformation using the tactic language of Coq,10

and so the only way out is to define a dedicated plugin. However, the standard way of11

doing it is to write OCaml code which directly interacts with the ML code of Coq.12

Besides providing technical difficulties with respect to the compilation of the plugin,13

interacting directly with the ML code of Coq has also the disadvantage that it may14

be broken by further evolution of the ML code. Using MetaCoq instead, a plugin15

developer can work directly in Coq, with a standardized API which is not subject to16

implementation changes in the ML code of Coq.17

In the previous command, the notation <% t %> is a notation for the syntax of t, ob-18

tained by quoting. Using MetaCoq, it is possible to define the function add_constructor19

which takes the syntax of an inductive type tm, a name idc for the new constructor and20

the syntax of the type ctor of the new constructor, abstracted with respect to the new21

inductive.22

Definition add_constructor (tm : term) (idc : ident) (type : term)
: TemplateMonad unit
B match tm with

| tInd ind0 _ ⇒
decl ← tmQuoteInductive (inductive_mind ind0) ;;
let ind’ B add_ctor decl ind0 idc type in
tmMkInductive’ ind’

| _ ⇒ tmPrint tm ;; tmFail " is not an inductive"
end.

Note here the use of the TemplateMonad to describe computation involving reification23

of terms from Coq to MetaCoq (see Section 3). The function is defined in the following24

The MetaCoq Project 5

way. First, the inductive type tm (which was obtained by quotation through the <% _ %>1

notation) is expected to be a tInd constructor otherwise the function fails. Then the2

declaration of this inductive is obtained by calling tmQuoteInductive, and an auxiliary3

function is called to add the constructor to the declaration. The new inductive type is4

added to the current context with tmMkInductive.5

It remains to define the add_ctor auxiliary function to complete the definition of6

the plugin. This function directly works on the reification of the syntax by taking a7

mutual_inductive_body which is the declaration of a block of mutual inductive types8

and returning an extended mutual_inductive_body.9

Definition add_ctor (mind : mutual_inductive_body) (ind0 : inductive)
(idc : ident) (ctor : term) : mutual_inductive_body.

We refer the reader to Section 4.1 for a complete definition. Coarsely, most of the fields10

of the records are propagated, except for the names of constructors which are made11

globally fresh and the addition of a new constructor type.12

This exemplifies that using MetaCoq, it becomes possible to define plugins directly13

in Coq, without a complicated setup. We will see in §4.2 that we can go further and14

reason about the code of such plugins using the specification described in §2.3.15

1.2 Departures from Coq theory16

The theory described in MetaCoq is supposed to match with what is implemented in17

the Coq proof assistant. However, as of today, a few Coq features are still lacking in18

MetaCoq:19

– η-conversion for functions, which asserts that a function f is convertible to fun x20

⇒ f x,21

– template-polymorphism, which allows to use some monomorphic inductive types at22

several type levels,23

– the full modules system,24

– the guard condition for fixpoints, which avoids non terminating functions,25

– the positivity criterion on inductive types and the productivity criterion on coin-26

ductive types, which forbid inconsistent declarations,27

– cumulative inductive types, a recent feature extending cumulativity to some inductive28

types (e.g., list Typei ≤ list Typej if Typei ≤ Typej),29

– native compute and vm compute conversion algorithms,30

– Coq 8.10 features (native integers and definition proof irrelevant universe SProp),31

the Coq’s version considered in this paper is 8.9.32

Potential evolutions of MetaCoq will integrate them, as well as changes brought by33

new versions of Coq.34

1.3 Outline of the Paper35

In Section 2, we present the complete reification of Coq terms, covering the entire CIC36

and present a formal specification of typing derivations of these terms. In Section 3,37

we give the definition of the TemplateMonad for general manipulation of Coq’s logical38

6 Sozeau et al.

environment and use it to define tactics and plugins for various translations from Coq1

to Coq or λ-calculus (Section 4). Section 5 covers a modification of TemplateMonad that2

enables plugins to be run natively in OCaml. Finally, we discuss related and future3

work in Section 6.4

What is new with respect to the ITP’18 conference article. This article is an extended5

version of the ITP’18 conference article (Anand et al., 2018). The main additions and6

improvements are:7

– A complete exposition of the formalization of Coq’s type system in MetaCoq.8

Section 2 can thus be seen as a formal specification of the theory implemented by9

the kernel of the Coq proof assistant, which was sorely missing in the litterature.10

– An example of a certified tactic: tauto. This tactic solves formulas of propositional11

logic using reification in MetaCoq and a decision procedure defined in Coq. This12

illustrate the use of the formalization of the typing system described in Section 2 to13

state and prove the correctness of a tactic.14

– An example of a plugin for the extraction of Coq functions to the weak-call-by-value15

λ-calculus.16

2 A Formal Specification of Coq17

In this section, we give a formal specification for Coq by giving its syntax and semantics.18

We will proceed as follows. First, we give the syntax of Coq terms (Section 2.1) and19

(local) environments (Section 2.2):20

term : Set context : Set21

Then, we give the formal semantics of those terms by defining the typing relation22

(Section 2.3), the reduction relation and the conversion relation (Section 2.4) which are23

in first approximation of type:24

typing : context → term → term → Type25

red : context → term → term → Type26

conv : context → term → term → Type27

Finally, Section 2.5 is devoted to the typing of local and global environments and mutual28

inductive type declarations while Section 2.6 explains the management of universes.29

In sections 2.3, 2.4 and 2.5 we give all the rules in detail to serve as reference both on30

Coq and MetaCoq. It is a formal presentation of a subset (without modules, without31

Template Polymorphism, . . .) of Coq’s reference manual pages on CIC2. However,32

these details are not necessary for the rest of the paper and may be skipped at first33

reading.34

2.1 Reification of Terms35

The central piece of MetaCoq is the inductive type term (Figure 1) which represents36

the syntax of Coq terms (this language is called Gallina). This inductive follows37

directly the constr datatype of Coq terms in the implementation of Coq, except38

2 https://coq.inria.fr/refman/language/cic.html

https://coq.inria.fr/refman/language/cic.html

The MetaCoq Project 7

Inductive term : Set B
| tRel (n : nat)
| tVar (id : ident)
| tEvar (ev : nat) (args : list term)
| tSort (s : universe)
| tCast (t : term) (kind : cast_kind) (v : term)
| tProd (na : name) (ty : term) (body : term)
| tLambda (na : name) (ty : term) (body : term)
| tLetIn (na : name) (def : term) (def_ty : term) (body : term)
| tApp (f : term) (args : list term)
| tConst (c : kername) (u : universe_instance)
| tInd (ind : inductive) (u : universe_instance)
| tConstruct (ind : inductive) (idx : nat) (u : universe_instance)
| tCase (ind_and_nbparams : inductive * nat) (type_info : term)

(discr : term) (branches : list (nat * term))
| tProj (proj : projection) (t : term)
| tFix (mfix : mfixpoint term) (idx : nat)
| tCoFix (mfix : mfixpoint term) (idx : nat).

Fig. 1 MetaCoq’s representation of Coq terms mirrors Coq’s constr type.

for the use of OCaml’s native arrays and strings3. Some familiar constructions are1

recognizable: sorts, lambdas, applications, . . . Let’s review the different constructors.2

Constructor tRel represents variables bound by abstractions (introduced by tLambda),3

dependent products (introduced by tProd) and local definitions (introduced by tLetIn).4

The natural number is a de Bruijn index. The name is a printing annotation:5

Definition ident B string.
Inductive name B nAnon | nNamed (_ : ident).

Sorts are represented with tSort, which takes a universe as argument. A universe6

can be either Prop, Set or a more complex expression representing one of the Type7

universes. The details are given in Section 2.6.8

Type casts (t : A) are given by tCast. The cast_kind indicates by which cunulativity9

checking algorithm (the default one, vm compute or native compute) or in which10

direction (left-to-right or right-to-left) the cast of the inferred type of t and A should be11

performed.12

n-ary application is introduced by tApp. In tApp t l, t is expected not to be an13

application, and l to be a non-empty list.14

Example 1 The function fun (f : Set → Set) (A : Set) ⇒ f A is represented by:15

16

tLambda (nNamed "f")
(tProd nAnon (tSort [(Level.lSet, false)]) (tSort [(Level.lSet, false)]))
(tLambda (nNamed "A") (tSort [(Level.lSet, false)]) (tApp (tRel 1) [tRel 0]))

The three constructors tConst, tInd and tConstruct represent references to constants17

declared in a global environment. The first is for definitions or axioms, the second for18

3 An upcoming extension of Coq (Armand et al., 2010) with such features could address
this mismatch.

8 Sozeau et al.

inductive types, and the last for constructors of inductive types. In Coq, constants can1

be universe polymorphic, meaning that they can be used at different universe levels.2

In such a case, said universe levels are given in the universe_instance which is a list of3

levels. If the constant is not universe polymorphic, the instance is expected to be empty.4

The tCase constructor represents a pattern-matching, which is one way inductive5

types are destructed in Coq. The first argument is the inductive on which the pattern-6

matching is done, then is the return predicate, then the scrutinee and last a the list of7

terms for each branch.8

The other way to destruct an inhabitant of an inductive type is by primitive9

projections tProj. They only operate on a restricted class of inductive types: the records10

(which moreover, have to be declared “primitive”).11

The last constructors tFix and tCoFix are (mutual) fixpoints and cofixpoints. The12

names, types and bodies of the functions are encapsulated in the mfixpoint:13

Record def (term : Set) : Set B mkdef {
dname : name;
dtype : term;
dbody : term;
rarg : nat (* index of the recursive argument, 0 for cofixpoints **) }.

Definition mfixpoint (term : Set) : Set B list (def term).

Example 2 The addition on natural numbers14

Fixpoint add (a b : nat) : nat B
match a with

| 0 ⇒ b
| S a ⇒ S (add a b)

end.

Is represented by:15

tFix [{|
dname B nNamed "add";
dtype B tProd (nNamed "a") (tInd inat [])

(tProd (nNamed "b") (tInd inat []) (tInd inat []));
dbody B tLambda (nNamed "a") (tInd inat [])

(tLambda (nNamed "b") (tInd inat [])
(tCase (inat, 0)

(tLambda (nNamed "a") (tInd inat []) (tInd inat []))
(tRel 1)
[(0, tRel 0);
(1, tLambda (nNamed "a") (tInd inat [])

(tApp (tConstruct inat 1 [])
[tApp (tRel 3) [tRel 0; tRel 1]]))]));

rarg B 0 |}] 0

where inat is a notation for the inductive representing nat:16

{| inductive_mind B "Coq.Init.Datatypes.nat"; inductive_ind B 0 |}

meaning that the mfixpoint is a list with one element (no mutual functions) with the17

fields dname, dtype, dbody and rarg as specified.18

The MetaCoq Project 9

tVar is for named variables introduced in Coq sections or during interactive proofs.1

tEvar represents for existential variables, i.e., holes to be filled in terms. Typing of these2

two constructions is not defined in MetaCoq for the moment.3

2.2 Reification of environment4

In Coq, the meaning of a term is relative to an environment, which must be reified5

as well. We distinguish the global environment which is constant through a typing6

derivation, from the local context which may vary. The type of the typing relation is:7

typing : global_context → context → term → term → Type8

(similar for red and conv)9

The local context records the types and potential bodies (for let-ins) of de Bruijn10

indexes:11

Record context_decl B mkdecl {
decl_name : name ;
decl_body : option term ;
decl_type : term

}.
Definition context B list context_decl.

The de Bruijn index 0 is bound to the head of the list. Contexts are written in snoc12

order: we use the notation Γ ,, d for adding d to the head of Γ . We also use the13

abbreviations vass x A and vdef x t A for the two ways to build a context_decl (with14

or without a body). Last, we use the notation Γ ,,, Γ’ for context concatenation.15

Remark 1 Contrarily to MetaCoq, in the OCaml code of Coq de Bruijn indices start16

at 1 for historical reasons.17

The global environment consists of a list of declarations, properly ordered according18

to dependencies. An extended global environment is a global environment extended by19

some additional universe declarations (it is use to typecheck a declaration).20

Definition global_env B list global_decl.
Definition global_env_ext B list global_decl × universes_decl.

A declaration is either the declaration of a constant (a definition or an axiom, according21

to the presence of body) or of a block of mutual inductive types (which brings both the22

inductive types and their constructors to the context).23

Inductive global_decl B
| ConstantDecl : kername → constant_body → global_decl
| InductiveDecl : kername → mutual_inductive_body → global_decl.

The kernel name kername is a fully qualified name (among modules), for instance the24

kernel name corresponding to nat is Coq.Init.Datatypes.nat. kername as a type is a25

synonym to string.26

The declaration of a constant is fairly easy:27

10 Sozeau et al.

Record constant_body B {
cst_type : term;
cst_body : option term;
cst_universes : universe_context

}.

The universe_context indicates whether the constant is polymorphic or not. If so, it1

contains the constraints that the universe instances have to satisfy. If not, it gives the2

fresh universes introduced by the declaration.3

Declarations of inductives are more involved, they are described in Section 2.5.4

2.3 Typing judgements5

Now that we have terms and environments, we can describe formally all the typing6

rules of Coq. This is done by defining an inductive family typing whose definition looks7

like:8

Inductive typing (Σ : global_context) (Γ : context) : term → term → Type B
| type_Rel n :

All_local_env typing Σ Γ →
nth_error Γ n = Some decl →
Σ ;;; Γ ` tRel n : lift0 (S n) decl.(decl_type)

| type_Sort (l : level) :
All_local_env typing Σ Γ →
Σ ;;; Γ ` tSort (Universe.make l) : tSort (Universe.super l)

| ...

where " Σ ;;; Γ ` t : T " B (typing Σ Γ t T)

with typing_spine Σ Γ : term → list term → term → Type B
| type_spine_nil ty : typing_spine Σ Γ ty [] ty

| type_spine_cons hd tl na A B s T B’ :
Σ ;;; Γ ` tProd na A B : tSort s →
Σ ;;; Γ ` T ≤ tProd na A B →
Σ ;;; Γ ` hd : A →
typing_spine Σ Γ (subst10 hd B) tl B’ →
typing_spine Σ Γ T (hd :: tl) B’.

The typing rules include the basic dependent λ-calculus with let-bindings, global9

references to inductives and constants, pattern-maching, primitive projections and10

(co)fixed-points. Universe polymorphic definitions and the well-formedness judgment11

for global declarations are dealt with as well. The only ingredients missing are the12

termination check for fixed-points and productivity check for cofixed-points. They are13

work-in-progress.14

Note that the typing rules use substitution and lifting operations of de Bruijn15

indexes (lift0, subst, . . .), their definitions are standard. The typing relation also relies16

on the subtyping relation. It is described in Section 2.4.17

We shall now take time to explain in details the rules one by one.18

The MetaCoq Project 11

Variables. A variable is well typed when its de Bruijn index corresponds to a declara-1

tion in the (local) context Γ . The following rule is not saying much more despite its2

looks.3

type_Rel n decl :
All_local_env typing Σ Γ →
nth_error Γ n = Some decl →
Σ ;;; Γ ` tRel n : lift0 (S n) decl.(decl_type)

decl is a declaration of type context_decl. The rule attests that the nth variable4

corresponds to the nth most recent declaration in the context and thus has the ascribed5

type. The latter is however lifted because the context contains n declarations after6

it:7

Γ = ∆, decl_n, ..., decl1, decl0

with decl_n typed in ∆, so Γ is ∆ extended with S n declarations, hence the lift0 (S n).8

Finally, All_local_env typing Σ Γ is asserting that the local context Γ is well-formed in9

global context Σ. Later on this property is called wf_local Σ Γ but here the dependency10

on typing is being made explicit.11

Sorts. Any sort corresponding to a level (without a +1) can be typed with its successor12

universe (with a +1), provided the context is well-formed.13

type_Sort l :
All_local_env typing Σ Γ →
Σ ;;; Γ ` tSort (Universe.make l) : tSort (Universe.super l)

Remark 2 With this rule, only non-algebraic universes can be typed (see Section 2.614

for the definition of non-algebraic universes).15

Type-casts. In Coq, a type-cast happens when you give a type explicitly to an16

expression: (t : A). t is checked to have type A and the whole expression is also typed17

with A.18

type_Cast t k A s :
Σ ;;; Γ ` A : tSort s →
Σ ;;; Γ ` t : A →
Σ ;;; Γ ` tCast t k A : A

In the rule it is required that A is well-sorted, meaning that there exists (constructively)19

a sort s such that A is of type tSort s. In Coq’s kernel, the k : cast_kind indicates20

which algorithm is used to check the conversion between A and the type of t. We ignore21

it for the moment in MetaCoq.22

Dependent products. The dependent product, or Π-type, ∀ x : A, B is well typed23

when both A and B are well typed (the latter in the context extended with assumption24

x : A).25

12 Sozeau et al.

type_Prod n A B s1 s2 :
Σ ;;; Γ ` A : tSort s1 →
Σ ;;; Γ ,, vass n A ` B : tSort s2 →
Σ ;;; Γ ` tProd n A B : tSort (Universe.sort_of_product s1 s2)

The sort in which the product lives is the maximum of the sorts of its components1

when B is not a proposition, and Prop otherwise (the universe Prop is said to be2

impredicative):3

Definition sort_of_product domsort rangsort B
match (domsort, rangsort) with
| (_, [(Level.lProp,false)]) ⇒ rangsort
| (u1, u2) ⇒ Universe.sup u1 u2
end.

λ-abstractions. Similarly the rule governing the typing of fun x : A ⇒ t is not4

surprising.5

type_Lambda n A t s1 B :
Σ ;;; Γ ` A : tSort s1 →
Σ ;;; Γ ,, vass n A ` t : B →
Σ ;;; Γ ` tLambda n A t : tProd n A B

let in expression. tLetIn x b B t reifies let x B b : B in t for which typing is6

pretty straightforward. Assuming t : A the whole expression has type let x B b : B7

in A which is convertible to A[x B b].8

type_LetIn x b B t s1 A :
Σ ;;; Γ ` B : tSort s1 →
Σ ;;; Γ ` b : B →
Σ ;;; Γ ,, vdef x b B ` t : A →
Σ ;;; Γ ` tLetIn x b B t : tLetIn x b B A

Applications. Typing applications is usually simple, but because MetaCoq features9

n-ary applications, we need to be careful when handling them.10

type_App t l t_ty t’ :
Σ ;;; Γ ` t : t_ty →
~ (isApp t = true) → l 6= [] → (* Well-formed application *)
typing_spine Σ Γ t_ty l t’ →
Σ ;;; Γ ` tApp t l : t’

The conditions ~ (isApp t = true) and l 6= [] ensure that the application is well-11

formed: that is t is not a nested application and it is applied to at least one argument.12

Then typing_spine Σ Γ t_ty l t’ states that a term of type t_ty applied to a list of13

arguments l will return a term of type t’. Let’s have a closer look at it:14

The MetaCoq Project 13

typing_spine Σ Γ : term → list term → term → Type B
| type_spine_nil ty : typing_spine Σ Γ ty [] ty
| type_spine_cons hd tl na A B s T B’ :
Σ ;;; Γ ` tProd na A B : tSort s →
Σ ;;; Γ ` T ≤ tProd na A B →
Σ ;;; Γ ` hd : A →
typing_spine Σ Γ (subst10 hd B) tl B’ →
typing_spine Σ Γ T (hd :: tl) B’.

There is an iteration over every argument of the function, checking each time that the1

new function has a function type and is being applied to something in its domain. The2

argument is then substituted in the codomain which then is matched against a function3

type again, until there are no arguments left and the type can be returned as is.4

Global constants. A constant can either refer to a global definition (stemming from5

Definition or Lemma for instance), or to an axiom (Axiom). It has a name which is a6

kername. Such a declaration can be universe polymorphic, so when referring to a constant,7

one needs to provide it with a universe instance (i.e., values for the universe variables8

in the definition).9

type_Const cst u :
All_local_env typing Σ Γ →
∀ decl (isdecl : declared_constant (fst Σ) cst decl),
consistent_universe_context_instance (snd Σ) decl.(cst_universes) u →
Σ ;;; Γ ` tConst cst u : subst_instance_constr u decl.(cst_type)

For a constant to be well typed, it first needs to indeed refer to a declared constant10

in the global context Σ, which is checked by declared_constant (fst Σ) cst decl, a11

synonym to lookup_env (fst Σ) cst = Some (ConstantDecl cst decl).12

consistent_universe_context_instance has a self-explanatory name: it checks that13

the instance is indeed an instance and verifies that if satisfies the constraints. The14

constant can thus be typed with the type found in the context decl.(cst_type), where15

the universes are substituted with the instance.16

Inductive types. Typing an inductive type is very similar to typing a constant. This17

time ind is of type inductive which consists of a kername (the name of the mutual-18

inductive block) and a natural number (the index of the considered inductive type19

in the block, starting at 0). Similarly to constants, inductive types can be universe20

polymorphic.21

type_Ind ind u :
All_local_env typing Σ Γ →
∀ mdecl idecl (isdecl : declared_inductive (fst Σ) mdecl ind idecl),
consistent_universe_context_instance (snd Σ) mdecl.(ind_universes) u →
Σ ;;; Γ ` tInd ind u : subst_instance_constr u idecl.(ind_type)

Inductives are declared in the global context as well. mdecl corresponds to the mu-22

tual block and idecl corresponds to the inductive of that block we’re interested in.23

declared_inductive checks that ind indeed corresponds to these declarations in Σ.24

14 Sozeau et al.

Constructors of an inductive type. Inductive types come with their constructors.1

If the inductive type is declared, and the constructor is indeed a constructor, then it is2

welltyped.3

type_Construct ind i u :
All_local_env typing Σ Γ →
∀ mdecl idecl cdecl

(isdecl : declared_constructor (fst Σ) mdecl idecl (ind, i) cdecl),
consistent_universe_context_instance (snd Σ) mdecl.(ind_universes) u →
Σ ;;; Γ ` tConstruct ind i u : type_of_constructor mdecl cdecl (ind, i) u

However, this time the constructor types come under the context corresponding to4

the mutual inductive types. Take for instance the mutual inductive types even and5

odd:6

Inductive even : nat → Prop B
| evenO : even 0
| evenS : ∀ n, odd n → even (S n)

with odd : nat → Prop B
| oddS : ∀ n, even n → odd (S n).

In this case, evenS is typed in context even : nat → Prop, odd : nat → Prop, which7

is why it can refer to both types, even before they are defined.8

The purpose of type_of_constructor is thus to substitute these variables by their9

actual definitions, as well as instantiating the universes.10

Pattern matching. In the internals of Coq and MetaCoq, pattern-matching is11

refered to as tCase. Dependent pattern-matching with general inductive types is no12

small task so we shall try and break down the typing rule, and the tCase construc-13

tor.14

type_Case ind u npar p c brs args :
∀ mdecl idecl

(isdecl : declared_inductive (fst Σ) mdecl ind idecl),
mdecl.(ind_npars) = npar →
let pars B List.firstn npar args in
∀ pty, Σ ;;; Γ ` p : pty →
∀ indctx pctx ps btys,

types_of_case ind mdecl idecl pars u p pty =
Some (indctx, pctx, ps, btys) →
check_correct_arity (snd Σ) idecl ind u indctx pars pctx = true →
Exists (fun sf ⇒ universe_family ps = sf) idecl.(ind_kelim) →
Σ ;;; Γ ` c : mkApps (tInd ind u) args →
All2 (fun x y ⇒ (fst x = fst y) * (Σ ;;; Γ ` snd x : snd y)) brs btys
→
Σ ;;; Γ ` tCase (ind, npar) p c brs : mkApps p (List.skipn npar args ++
[c])

In tCase (ind, npar) p c brs, ind is inductive type of the scrutinee c, npar is the number15

of parameters of the inductive (arguments that are constant across all the constructors),16

p is the predicate or return type, while brs is a list of branches comprised of the17

number of arguments of the constructor and the term corresponding to the branch18

The MetaCoq Project 15

(with abstractions for the arguments of the constructor). For instance, consider the1

following pattern-matching:2

fun m P (PO : P 0) (PS : ∀ n, P (S n)) ⇒
match m as n return P n with
| 0 ⇒ PO
| S n ⇒ PS n
end.

Ignoring the λs, it is quoted to3

tCase
(inat, 0)
(tLambda (nNamed "n") (tInd inat []) (tApp (tRel 3) [tRel 0]))
(tRel 3) [

(0, tRel 1) ;
(1, tLambda (nNamed "n") (tInd inat []) (tApp (tRel 1) [tRel 0]))

]

Let’s focus on the rule now. As we did for inductive types, we check that the4

inductive type of the scrutinee is declared.5

Σ ;;; Γ ` c : mkApps (tInd ind u) args checks that the scrutinee c is indeed in6

the right type, i.e., the inductive applied to some arguments. After checking that npar7

is indeed the number of parameters of the inductive type (mdecl.(ind_npars) = npar),8

we take them off the list of arguments (pars B List.firstn npar args). The rest are9

the indices of the inductive type and may vary depending on the branch.10

Additionally, we check that the predicate (or return type) is well typed with Σ ;;;11

Γ ` p : pty.12

types_of_case has the purpose of producing the typing information required to type13

the branches:14

– indctx corresponds to the context of the inductive type where the parameters15

have been instantiated by pars, it thus contains only the indices, (e.g., y : A when16

matching against p : @eq A u v, A and u being the parameters);17

– pctx and ps are a decomposition of p as: first some Π-types and let-ins, then the18

sort ps (in particular it forces p to be a type once fully applied);19

– btys is a list containing the expected type for each element of brs, the branches.20

check_correct_arity verifies that pctx is equal (modulo α-renaming) to indctx21

extended with a variable of the inductive applied to the parameters pars and the22

variables of context indctx.23

Then, Exists (fun sf ⇒ universe_family ps = sf) idecl.(ind_kelim) attests that24

the sort of the predcate ps belongs to one of the universe families that the inductive25

type can be eliminated to (ind_kelim). The universe family may be Prop, Set or Type26

and some inductives have restrictions for elimination; most inductive types defined in27

Prop can only be eliminated into Prop itself, the only way to bypass this restriction is28

using the so-called singleton elimination.29

Finally, with All2 we iterate over both brs and btys to check that the branches are30

indeed typed according to what is recorded in btys, all the while checking that they31

agree on the number of arguments of the constructors (with the fst part).32

16 Sozeau et al.

Primitive projections. In Coq there are two notions of record types. By default,1

when one defines the following record:2

Record T B mk { pi1 : bool ; pi2 : nat }.

it is actually equivalent to the inductive type with one constructor3

Inductive T B mk (pi1 : bool) (pi2 : nat).

along with the definitions of pi1 and pi2 by pattern-matching.4

It is however possible to define records in a more primitive way. Using the global5

option Set Primitive Projections, the former record definition is still internally repre-6

sented as an inductive, but this time, additionally to constructors, it has projections,7

corresponding to pi1 and pi2. Projections can be called with the syntax t.(pi1) or as8

regular functions.9

type_Proj p c u :
∀ mdecl idecl pdecl

(isdecl : declared_projection (fst Σ) mdecl idecl p pdecl) args,
Σ ;;; Γ ` c : mkApps (tInd (fst (fst p)) u) args →
#|args| = ind_npars mdecl →
let ty B snd pdecl in
Σ ;;; Γ ` tProj p c

: subst0 (c :: List.rev args) (subst_instance_constr u ty)

As usual, declared_projection checks that Σ contains both the inductive and the10

projection declaration. The projection is applied to a term c of the record as ensured11

by the condition:12

Σ ;;; Γ ` c : mkApps (tInd (fst (fst p)) u) args

Here projection stands for inductive * nat * nat, that is an inductive, a number of13

parameters and the index of the projected argument. We verify that the inductive is14

fully applied with #|args| = ind_npars mdecl, stating that the number of arguments15

corresponds to the number of parameters of the inductive type. Finally, we substitute16

these arguments, c, and the universes in the type of the projection to get the type of17

the term.18

Fixed-points. In Coq, the fixed-point operator is primitive and completes pattern-19

matching for performing induction. One usually writes a fixed-point using the aptly20

named command Fixpoint. It is however possible to write them directly in a term with21

fix. Let’s consider the following mutual fixed-point:22

fix f1 (x1:X11) ... (xn1:X1n1) {struct xk1} : A1 B t1
with ...
with fn (x1:Xn1) ... (xnn:Xnnn) {struct xkn} : An B tn
for fj

This fixed-point will be of type ∀ (x1:Xj1) ... (xnj:Xjnj), Aj. For it to be well typed23

there are three conditions:24

The MetaCoq Project 17

– Each Ai has to be a type;1

– Each ti has to be of type Ai in a context extended by the signatures of the fixed-
points (allowing the recursive calls in the body):

Γ, f1 : A1, . . . fn : An, x1 : Xi1, . . . xni : Xini
` ti : Ai;

– A termination criterion has to be fulfilled. Such a criterion has not yet been2

implemented in MetaCoq.3

Internally, a fixed-point is represented with tFix mfix idx where mfix : list (def4

term) represents the mutual fixed-points, and idx : nat specifies which of them we5

want to refer to. def is the following record:6

Record def (term : Set) : Set B mkdef {
dname : name; (* the name fi **)
dtype : term; (* the type Ai **)
dbody : term; (* the body ti (a lambda-term).

Note, this may mention other (mutually-defined) names **)
rarg : nat (* the index ki of the recursive argument, 0 for cofixpoints *

*)
}.

The formal typing rule is the following:7

type_Fix mfix n decl :
let types B fix_context mfix in
nth_error mfix n = Some decl →
All_local_env typing Σ (Γ ,,, types) →
All (fun d ⇒
Σ ;;; Γ ,,, types ` d.(dbody) : lift0 #|types| d.(dtype)) *
(isLambda d.(dbody) = true

) mfix →
Σ ;;; Γ ` tFix mfix n : decl.(dtype)

First, we build a context containing the assumptions of the different definitions with8

types B fix_context mfix, and verify that the composite context Γ ,,, types is well-9

formed. Then we check that idx indeed corresponds to one of the definitions of the10

block (nth_error mfix n = Some decl). Finally, for each of the definitions, we check that11

the body has the ascribed type (in the extended context, hence the lift0) and that12

they all correspond to functions. The return type is the ascribed type.13

Cofixed-points. Co-fixed-points are handled in a very similar fashion to regular14

fixed-points. Even their representation is the same. Again, productivity conditions15

remain unchecked for the time being.16

type_CoFix mfix n decl :

17

18 Sozeau et al.

let types B fix_context mfix in
nth_error mfix n = Some decl →
All_local_env typing Σ (Γ ,,, types) →
All (fun d ⇒
Σ ;;; Γ ,,, types ` d.(dbody) : lift0 #|types| d.(dtype)

) mfix →
Σ ;;; Γ ` tCoFix mfix n : decl.(dtype)

1

Conversion rules. We conclude with the usual conversion rule.2

type_Conv t A B s :
Σ ;;; Γ ` t : A →
Σ ;;; Γ ` B : tSort s →
Σ ;;; Γ ` A ≤ B →
Σ ;;; Γ ` t : B

It is here stated with cumulativity (allowing to increase universes in contravariant3

positions), and it requires the new type to be well-sorted as well. We shall explain4

conversion and cumulativity in more details in the next subsection.5

2.4 Conversion, Cumulativity and Reduction6

The cumulativity, or subtyping, relation, is defined from one-step reduction red1 as7

follows:8

Inductive cumul Σ Γ : term → term → Type B
| cumul_refl t u :

leq_term (snd Σ) t u →
Σ ;;; Γ ` t ≤ u

| cumul_red_l t u v :
red1 (fst Σ) Γ t v →
Σ ;;; Γ ` v ≤ u →
Σ ;;; Γ ` t ≤ u

| cumul_red_r t u v :
Σ ;;; Γ ` t ≤ v →
red1 (fst Σ) Γ u v →
Σ ;;; Γ ` t ≤ u

where " Σ ;;; Γ ` t ≤ u " B (cumul Σ Γ t u).

It means that A ≤ B when A and B respectively reduce to A’ and B’ such that cumulativity9

can be checked syntactically with leq_term. leq_term operates as a congruence and10

invokes universe comparison when reaching sorts.11

Conversion is derived from cumulativity going both ways:12

Definition conv Σ Γ T U B
(Σ ;;; Γ ` T ≤ U) * (Σ ;;; Γ ` U ≤ T).

Notation " Σ ;;; Γ ` t = u " B (conv Σ Γ t u).

The MetaCoq Project 19

It is equivalent to having both terms reduce to α-convertible terms.1

The main point of interest is thus how one-step reduction red1 is defined. It is2

introduced with the following command:3

Inductive red1 (Σ : global_declarations) (Γ : context) : term → term →
Type

however, we will not put here all of its constructors. Most of them are congruence rules.4

For instance, for tLambda, the congruences are as follows.5

| abs_red_l na M M’ N :
red1 Σ Γ M M’ →
red1 Σ Γ (tLambda na M N) (tLambda na M’ N)

| abs_red_r na M M’ N :
red1 Σ (Γ ,, vass na N) M M’ →
red1 Σ Γ (tLambda na N M) (tLambda na N M’)

A term reduces to another in one step, if one of its subterms does. It holds for all term6

constructors so we will now focus on actual computation rules.7

β-reduction. A λ-abstraction may consume its first argument to reduce.8

red_beta na t b a l :
red1 Σ Γ (tApp (tLambda na t b) (a :: l)) (mkApps (subst10 a b) l)

let expressions. A let expression can be unfolded as a substitution right away (this9

is called ζ-reduction):10

red_zeta na b t b’ :
red1 Σ Γ (tLetIn na b t b’) (subst10 b b’)

It can also be unfolded later, by reducing a reference to the let-binding:11

red_rel i body :
option_map decl_body (nth_error Γ i) = Some (Some body) →
red1 Σ Γ (tRel i) (lift0 (S i) body)

It checks that the ith variable in Γ corresponds to a definition and replaces the variable12

with it. It needs to be lifted because the body was defined in a smaller context.13

Pattern-matching. A match expression can be reduced with ι-reduction when the14

scrutinee is a constructor.15

red_iota ind pars c u args p brs :
red1 Σ Γ (tCase (ind, pars) p (mkApps (tConstruct ind c u) args) brs)

(iota_red pars c args brs)

Herein, iota_red is defined as follows:16

20 Sozeau et al.

Definition iota_red npar c args brs B
mkApps (snd (List.nth c brs (0, tDummy))) (List.skipn npar args).

As List.nth takes a default value, (0, tDummy) can be ignored, it picks the branch1

corresponding to the constructor and applies it to the indices of the inductive (List.2

skipn npar args).3

Fixed-point unfolding. Even after they are checked to be terminating, fixed-points4

cannot be unfolded indefinitely. There is a syntactic guard to only unfold a fixed-point5

when its recursive argument is a constructor.6

red_fix mfix idx args narg fn :
unfold_fix mfix idx = Some (narg, fn) →
is_constructor narg args = true →
red1 Σ Γ (tApp (tFix mfix idx) args) (tApp fn args)

unfold_fix mfix idx allows to recover both the body (fn) and the index of the recursive7

argument (narg) while is_constructor narg args checks that the said argument is indeed8

a constructor.9

Co-fixed-point unfolding. There are two cases where a co-fixed-point gets unfolded.10

One of them is when it is matched against.11

red_cofix_case ip p mfix idx args narg fn brs :
unfold_cofix mfix idx = Some (narg, fn) →
red1 Σ Γ (tCase ip p (mkApps (tCoFix mfix idx) args) brs)

(tCase ip p (mkApps fn args) brs)

As for fixed-points, unfold_cofix returns the body.12

A co-fixed-point can also be unfolded when projected, behaving exactly the same13

way.14

red_cofix_proj p mfix idx args narg fn :
unfold_cofix mfix idx = Some (narg, fn) →
red1 Σ Γ (tProj p (mkApps (tCoFix mfix idx) args))

(tProj p (mkApps fn args))

δ-reduction. δ-reduction allows to unfold a constant (from the global context Σ15

).16

red_delta c decl body (isdecl : declared_constant Σ c decl) u :
decl.(cst_body) = Some body →
red1 Σ Γ (tConst c u) (subst_instance_constr u body)

It can only be done if a definition is indeed found. Its universes (if it is universe17

polymorphic) are then instantiated.18

The MetaCoq Project 21

Projection. When a constructor of a record is projected, it can be reduced to the1

corresponding field.2

red_proj i pars narg args k u arg :
nth_error args (pars + narg) = Some arg →
red1 Σ Γ (tProj (i, pars, narg) (mkApps (tConstruct i k u) args)) arg

2.5 Typing environments3

Local environment. As already mentioned in the typing rules, a local context Γ4

is well-formed if wf_local Σ Γ holds. This type is an abbreviation of All_local_env5

typing Σ Γ where All_local_env is defined by:6

Inductive All_local_env (Σ : global_context) : context → Type B
| localenv_nil :

All_local_env Σ []

| localenv_cons_abs Γ na t u :
All_local_env Σ Γ →
typing Σ Γ t (tSort u) →
All_local_env Σ (Γ ,, vass na t)

| localenv_cons_def Γ na b t :
All_local_env Σ Γ →
typing Σ Γ b t →
All_local_env Σ (Γ ,, vdef na b t).

Hence, the empty context is well-formed. A variable assumption is well-formed if the7

type is well-sorted and a variable definition is well-formed if the body is indeed of the8

given type.9

The well-typedness of the local context is enforced in every typing judgment:10

∀ Σ Γ t T, Σ ;;; Γ ` t : T → wf_local Σ Γ11

Global environment. Well-typedness of global environments is described by the12

predicate on_global_env Σ defined below. As opposed to local contexts, well-typedness13

of global environments is not enforced in typing judgments and has thus to be stated14

additionally (in the code we use the shortcut wf Σ).15

Definition on_constant_decl Σ d B

16

22 Sozeau et al.

match d.(cst_body) with
| Some trm ⇒ typing Σ [] trm d.(cst_type)
| None ⇒ {u : universe & typing Σ [] d.(cst_type) (tSort u)}
end.

Definition on_global_decl Σ decl B
match decl with
| ConstantDecl id d ⇒ on_constant_decl Σ d
| InductiveDecl ind inds ⇒ on_inductive Σ ind inds
end.

Inductive on_global_env : global_env → Type B
| globenv_nil : on_global_env []
| globenv_decl Σ d :

on_global_env Σ →
fresh_global (global_decl_ident d) Σ →
let udecl B universes_decl_of_decl d in
on_udecl Σ udecl →
on_global_decl (Σ, udecl) d →
on_global_env (Σ ,, d).

1

The empty environment is well-formed. A well-formed global declaration has to carry a2

well-formed universe declaration meaning that:3

– the introduced levels are fresh ;4

– the introduced constraints use declared levels ;5

– the set of constraints of the global environment, enriched with the introduced6

constraints, is still satisfiable.7

Moreover, monomorphic declaration cannot introduce polymorphic levels Var (see8

below). Well-formedness of constants is the same as for local contexts. Well-formedness9

of inductive declarations is outlined below. For each new declaration, the identifier is10

required to be fresh with respect to the previous ones.11

Inductive declarations. In Coq, a block of mutual inductive types is declared as12

follows:13

Inductive I1 params : A1 B c11 : T11 | ... | c1n1 : T1n1
...
with Ip params : Ap B cp1 : Tp1 | ... | cpnp : Tpnp.

I1, . . . Ip are the names of the inductive types. A1, . . . Ap are the arities. The cij are the14

constructors and the Tij their types. params is the context of parameters. This context15

can contain some let-bindings, we will write x1, . . . xn for the variables without body16

bound in this context.17

Remark 3 With respect to indices, parameters x1, . . . xn have to be constant in all18

the conclusions of the types of constructors. However, they may vary in the types of19

arguments of constructors. A parameter is called uniform if it is constant through the20

whole inductive type, and non uniform otherwise.21

In MetaCoq, a mutual block of inductive types is formally represented by a22

mutual_inductive_body which, itself, consists mainly in a list of one_inductive_body, one23

for each block.24

The MetaCoq Project 23

(* Declaration of one inductive type *)
Record one_inductive_body B {

ind_name : ident;
ind_type : term; (* closed arity: ∀ params, Ai *)
ind_kelim : list sort_family; (* allowed elimination sorts *)
(* name, type, number of arguments for each constructor *)
ind_ctors : list (ident * term * nat);
(* name and type for each projection (if any) *)
ind_projs : list (ident * term)

}.

(* Declaration of a block of mutual inductive types *)
Record mutual_inductive_body B {

ind_npars : nat; (* number of parameters *)
ind params : context; (* types of the parameters *)
ind_bodies : list one_inductive_body; (* inductives of the block *)
ind_universes : universe_context (* universe constraints *)

}.

A block mutual_inductive_body is well-formed when:1

– the context of parameters is well-formed: wf_local Σ ind params;2

– ind_npars is the number of assumptions (i.e., without let-in) in ind params;3

– each one_inductive_body is well-formed.4

And a declaration of type one_inductive_body is well-formed when:5

– the arity ind_type is well-sorted in the empty context and starts with at least6

ind_npars foralls “∀” and ends with a sort inds. Coq lets users write arbitrary terms7

to the right of the : in an inductive type declaration, but the kernel checks that it8

is convertible to such an arity, up-to all reduction rules (and hence freely removing9

casts).10

– for each triplet (id,T,n) of the list of constructors ind_ctors,11

– T is well-sorted under the context of arities:

I1 : A′1, . . . In : A′n ` T : inds where A′i is ∀params, Ai;

– T is of the shape ∀params args, Ii x1 . . . xn t1 . . . tk where args are the real12

arguments of the constructor and Ii is the corresponding de Bruijn index4. The13

context of arguments should be typeable with the sort inds declared for the14

inductive, unless inds = Prop and the inductive is squashed (in that case, the15

constructor argument’s bounding universe can be arbitrary).16

– for each pair (id, T) of the list of projections ind_projs:17

– the inductive type has no index;18

– T is well-sorted in the context of parameters extended by the considered inductive
type:

params, x : Ii x1 . . . xn ` T : s.

This specification of inductive types is not fully complete: for instance ind_kelim is19

not checked yet. The main missing feature is the positivity criterion.20

4 Note that we use a context of arities and de Bruijn indices to refer to the inductive types
because they are not yet defined in the current global environment.

24 Sozeau et al.

Remark 4 In Coq internals, there are in fact two ways of representing a declaration:1

either as a “body” (constant_body or mutual_inductive_body) or as an “entry”. The kernel2

takes entries as input, type-checks them and elaborates them into bodies. In MetaCoq,3

we provide both, as well as an erasing function mind_body_to_entry for inductive types.4

2.6 Universes5

The system of universes in Coq is both a strong feature and a relatively complex one,6

as it combines floating global universes variables and constraints for typical ambiguity,7

cumulativity and universe polymoprhism. We hope that MetaCoq can shed some light8

on it.9

Coq relies on a hierarchy of universes: Prop, Set, Type0, Type1, Type2, . . . The universe10

Set can be seen as a strict synonym of Type0.11

The hierarchy behaves as follows for typing:12

Prop : Type113

Type0 : Type1 : Type2 . . .14

And as follows with respect to cumulativity:15

Prop ⊆ Type0 ⊆ Type1 ⊆ Type2 . . .16

Prop is not of type Set to keep compatibility with the -impredicative-set flag. Otherwise,17

with an impredicative Set, we would have the membership of an impredicative sort in18

another one which leads to a paradox5.19

In Coq, the user does not have to provide the universe level i of Typei but can20

instead use typical ambiguity and simply write Type. Typical ambiguity is, informally,21

the idea of refering to all universes using the symbol Type and letting the reader (our in22

our case, the proof assistant) infer a satisfiable assignment of universe levels to each23

occurrence to make the statement universe-check. It was introduced by Russell (1908)24

as a notational facility when formalizing the theory of classes, relations and cardinal25

and ordinal numbers – see Feferman (2001) detailed account of this notion from the26

history of philosophy point of view.27

The Coq system has then the responsibility of instantiating the universe levels28

properly. For flexibility, the universe levels are not definitely determined at declaration29

time. Instead, a universe variable for the level is introduced and only the most general30

constraints on this variable are recorded. In technical cases, the user can enforce the31

universe variable with the notation Type@{l}.32

For instance, the following definition33

Definition T : Type@{l1} B ∀ (A : Type@{l2}), A → Set.

will generate the constraints Set < l1 and l2 < l1 where l1 and l2 are universe variables.34

Here, the set of constraints is satisfiable: it can be instantiated with, for instance,35

(l1 B 2, l2 B 1).36

The Coq system maintains a set of constraints and updates it each time a new37

universe variable is introduced. The Coq system also manipulates some algebraic uni-38

verses which are of the form Type@{max(l1,l2+1)}, as introduced in Herbelin and Spiwack39

5 See https://coq.github.io/doc/master/stdlib/Coq.Logic.Hurkens.html for details

https://coq.github.io/doc/master/stdlib/Coq.Logic.Hurkens.html

The MetaCoq Project 25

(2013). The level of these universes is uniquely determined by l1 and l2. Thanks to the1

Set keyword, Type0 is the only Typei that can be given explicitly by the user.2

3

Formally, a universe is the supremum of a (non-empty) list of level expressions,4

and a level is either Prop, Set, a global level or a de Bruijn polymorphic level variable.5

Polymorphic levels are used when type checking a polymorphic declaration (constant6

or inductive).7

Inductive level B lProp | lSet | Level (_ : string) | Var (_ : N).
Definition universe B list (level * bool). (* level+1 if true *)

A universe is called non-algebraic if it is a level (that is, of the form [(l, false)]), and8

algebraic otherwise. We follow Coq’s representation of level expressions here.9

A constraint is given by two levels and a constraint_type:10

Inductive constraint_type B Lt | Le | Eq.
Definition univ_constraint B Level.t * constraint_type * Level.t.

The set of constraints (constraints) is implemented by sets as lists without duplicates11

coming from the Coq standard library. A valuation is an instance for all monomorphic12

and polymorphic levels in natural numbers. Monomorphic (global) levels are required13

to be positive so that we have Prop : Type for any instance.14

Record valuation B
{ valuation_mono : string → positive ;

valuation_poly : nat → nat }.

We define the evaluation of valuation on monomorphic levels and then on universes.15

16

Fixpoint val0 (v : valuation) (l : Level.t) : Z B
match l with
| lProp ⇒ -1
| lSet ⇒ 0
| Level s ⇒ Zpos (v.(valuation_mono) s)
| Var x ⇒ Z.of_nat (v.(valuation_poly) x)
end.

Fixpoint val (v : valuation) (u : universe) (Hu : u 6= []) : Z B ...

A valuation satisfies a constraint if the constraint holds between the evaluations of17

the levels. Then, a set of constraints is said to be consistent if there exists a valuation18

satisfying the constraints:19

Definition consistent ctrs B ∃ v, satisfies v ctrs.

Last, given a set of constraints, two universes are said equal when they are equal for all20

valuation satisfying the constraints (idem for ≤):21

26 Sozeau et al.

Definition eq_universe (φ : constraints) u Hu u’ Hu’ B
∀ v, satisfies v (snd φ) → val v u Hu = val v u’ Hu’.

Definition leq_universe (φ : constraints) u Hu u’ Hu’ B
∀ v, satisfies v (snd φ) → val v u Hu ≤ val v u’ Hu’.

The functions eq_term and leq_term used in conversion and cumulativity relations are1

defined as congruence on terms calling those two functions on sorts.2

2.7 Towards bootstrapping Coq3

The reification of syntax is a first step toward the bootstrap of Coq. From this, one4

can reimplement some algorithms of the kernel such as type inference, type checking,5

the test of conversion/cumulativity and so on. On the other hand, the reification of6

semantics is then a first step toward the certification of such reimplementation. From7

here, we can dream of a proof assistant whose critical algorithms are certified.8

As a preliminary stage, we implemented the three aforementioned algorithms:9

10

(* typing_result is an error monad *)
check_conv: Fuel→ global_ctx → context → term → term → typing_result

unit
infer : Fuel→ global_ctx → context → term → typing_result term
check : Fuel→ global_ctx → context → term → term → typing_result

unit

Type checking is given by type inference followed by a conversion test. All the rules11

of type inference are straightforward except for cumulativity. The cumulativity test12

is implemented by comparing recursively head normal forms for a fast-path failure.13

We implemented weak-head reduction by mimicking Coq ’s implementation, which is14

based on an abstract machine inspired by Krivine’s Abstract Machine. Coq ’s machine15

optionally implements a variant of lazy, memoizing evaluation (the lazy reduction16

strategy), using mutable references, hence we did not implement this feature. The other17

major difference with the OCaml implementation is that all of functions are required18

to be shown terminating in Coq. One possibility could be to prove the termination of19

type-checking separately but this requires to prove in particular the normalization of20

CIC which is a complex task. Instead, we simply add a fuel parameter to make them21

syntactically recursive and make makeOutOfFuel a type error.22

We also implemented a naive satisfiability check of universe constraints. In Coq,23

the set of constraints is maintained as a weighted graph called the universe graph. The24

nodes are the introduced level variables, and the edges are given by the constraints.25

Each edge has a weight which corresponds to the minimal distance needed between the26

two nodes:27

Definition edges_of_constraint (uc : univ_constraint) : list edge B

28

The MetaCoq Project 27

let ’((l, ct),l’) B uc in
match ct with
| Lt ⇒ [(l,-1,l’)]
| Le ⇒ [(l,0,l’)]
| Eq ⇒ [(l,0,l’); (l’,0,l)]
end.

1

We implemented some functions to manipulate the graph:2

init_graph : uGraph.t (* contains only Prop and Set *)3

add_node : Level.t → uGraph.t → uGraph.t4

add_constraint : univ_constraint → uGraph.t → uGraph.t5

And some functions to query the graph:6

check_leq_universe : uGraph.t → universe → universe → bool7

check_eq_universe : uGraph.t → universe → universe → bool8

no_universe_inconsistency: uGraph.t → bool (* the graph has no negative cycle *)9

For the moment they all rely on a naive implementation of the Bellman-Ford algorithm10

as presented in Cormen et al. (2009).11

None of these algorithms have complete soundness or completeness proofs yet with12

respect to the specification.13

3 The Template-Coq Plugin14

Along with the formal specification of Coq, the MetaCoq project also provides a
plugin, called Template-Coq, which allows to move back and forth from concrete
syntax (the syntax of Coq as entered by the user) to reified syntax (as defined in the
previous section).

concrete syntax reified syntax

quote

unquote

The plugin can reflect all kernel Coq terms.15

We start by presenting the basic commands provided by the plugin to quote and16

unquote (Section 3.1), and then we describe in Section 3.2 the reification of the main17

Coq vernacular commands which can be used to automatize the use of quoting and18

unquoting. This makes it possible in particular to write plugins directly in Coq by19

combining such commands.20

3.1 Basic commands21

Quoting and unquoting of terms. The command Test Quote reifies the syntax of22

a term and prints it. For instance,23

Test Quote (fun x ⇒ x + 0).

outputs the following24

28 Sozeau et al.

(tLambda (nNamed "x")
(tInd {| inductive_mind B "Coq.Init.Datatypes.nat"; inductive_ind B 0 |}
[])

(tApp (tConst "Coq.Init.Nat.add" [])
[tRel 0; tConstruct {| inductive_mind B "Coq.Init.Datatypes.nat";

inductive_ind B 0 |} 0 []]))

The command Quote Definition f B (fun x ⇒ x + 0) records the reification of the1

term in the definition f to allow further manipulations.2

On the converse, the command Make Definition constructs a term from its syntax.3

The example below defines zero to be 0 of type N.4

Make Definition zero B tConstruct (mkInd "Coq.Init.Datatypes.nat" 0) 0 [].

where mkInd na k : inductive is the kth inductive of the mutual block of the name na.5

Quoting and unquoting the environment. Template-Coq provides the com-6

mand Quote Recursively Definition to quote an environment. This command crawls7

the environment and quotes all declarations needed to typecheck a given term.8

For instance, the command Quote Recursively Definition mult_syntax B mult (the9

multiplication on natural numbers) will define mult_syntax of type global_declarations10

* term. This first component is the list of declarations needed to typecheck the term11

mult. Namely, the declaration of the inductive nat and of the constants add and mult.12

The second component is the reified syntax of the term, here it is only: tConst "Coq.13

Init.Nat.mult" [].14

The command Make Inductive provides a way to declare an inductive type from its15

syntax. For instance, the following command defines a copy of N:16

Make Inductive (mind_body_to_entry
{| ind_npars B 0; ind_universes B [];

ind_bodies B [{|
ind_name B "nat";
ind_type B tSort [(lSet, false)];
ind_kelim B [InProp; InSet; InType];
ind_ctors B [("O", tRel 0, 0);

("S", tProd nAnon (tRel 0) (tRel 1), 1)];
ind_projs B [] |}] |}).

More examples on the use of quoting/unquoting commands can be found in the file17

test-suite/demo.v.18

3.2 Reification of Coq Commands19

Along with the reification of Coq terms, Template-Coq provides the reification of20

the main vernacular commands of Coq. This way, one can write plugins by combining21

such commands. To combine commands while taking into account that commands22

have side effects (notably by interacting with global environment), we use the “free”23

monadic setting to represent those operations. A similar approach was for instance used24

in Mtac (Ziliani et al., 2015).25

The MetaCoq Project 29

Inductive TemplateMonad : Type → Prop B
(* Monadic operations *)
| tmReturn : ∀ {A}, A → TemplateMonad A
| tmBind : ∀ {A B}, TemplateMonad A → (A → TemplateMonad B)

→ TemplateMonad B

(* General commands *)
| tmPrint : ∀ {A}, A → TemplateMonad unit
| tmMsg : string → TemplateMonad unit
| tmFail : ∀ {A}, string → TemplateMonad A
| tmEval : reductionStrategy → ∀ {A}, A → TemplateMonad A
| tmDefinition : ident → ∀ {A}, A → TemplateMonad A
| tmAxiom : ident → ∀ A, TemplateMonad A
| tmLemma : ident → ∀ A, TemplateMonad A
| tmFreshName : ident → TemplateMonad ident
| tmAbout : qualid → TemplateMonad (option global_reference)
| tmCurrentModPath : unit → TemplateMonad string
| tmExistingInstance : qualid → TemplateMonad unit
| tmInferInstance : option reductionStrategy → ∀ A, TemplateMonad (option A)

(* Quoting and unquoting commands *)
| tmQuote : ∀ {A}, A → TemplateMonad term
| tmQuoteRec : ∀ {A}, A → TemplateMonad (global_declarations * term)
| tmQuoteInductive : qualid → TemplateMonad mutual_inductive_body
| tmQuoteUniverses : TemplateMonad uGraph.t
| tmQuoteConstant : qualid → bool → TemplateMonad constant_entry
| tmMkInductive : mutual_inductive_entry → TemplateMonad unit
| tmUnquote : term → TemplateMonad {A : Type & A}
| tmUnquoteTyped : ∀ A, term → TemplateMonad A.

Fig. 2 The monad of commands

The syntax of reified commands is defined by the inductive family TemplateMonad1

(Fig. 2). In this family, TemplateMonad A represents a program which will eventually2

output a term of type A. There are special constructors tmReturn and tmBind to provide3

(freely) the basic monadic operations. We use the monadic syntactic sugar x ← t ;; u4

for tmBind t (fun x ⇒ u) and ret for tmReturn.5

The other operations of the monad can be classified in two categories:6

– the traditional Coq operations (tmDefinition to declare a new definition, etc.)7

– the quoting and unquoting operations to move between Coq term and their syntax8

or to work directly on the syntax (tmMkInductive to declare a new inductive from9

its syntax for instance).10

An overview of available commands is given in Table 1.11

A program prog of type TemplateMonad A can be executed with the command Run12

TemplateProgram prog. This command is thus an interpreter for TemplateMonad programs.13

It is implemented in OCaml as a traditional Coq plugin. The term produced by the14

program is discarded but, and it is the point, a program can have many side effects15

like declaring a new definition, declaring a new inductive type or printing something.16

Typically, we run programs of type TemplateMonad unit.17

Let’s look at some examples. The following program adds two definitions foo B 1218

and bar B foo + 1 to the current context.19

30 Sozeau et al.

Vernacular
command

Reified command with
its arguments

Description

Eval tmEval red t Returns the evaluation of t following the evaluation
strategy red (cbv, cbn, hnf, all, lazy or unfold)

Definition tmDefinition id t Makes the definition id B t and returns the cre-
ated constant id

Axiom tmAxiom id A Adds the axiom id of type A and returns the created
constant id

Lemma tmLemma id A Generates an obligation of type A, returns the cre-
ated constant id when all obligations are closed

About or
Locate tmAbout id

Returns Some gr if id is a constant in the current
environment and gr is the corresponding global
reference. Returns None otherwise

tmPrint t
tmMsg msg Prints a term or a message

tmFail msg Fails with error message msg

tmQuote t Returns the syntax of t (of type term)

tmQuoteRec t Returns the syntax of t and of all the declarations
on which it depends

tmQuoteInductive kn Returns the declaration of the inductive kn

tmQuoteConstant kn
b

Returns the declaration of the constant kn, if b is
true the implementation bypass opacity to get the
body of the constant

Make
Inductive tmMkInductive d Declares the inductive denoted by the declaration d

tmUnquote tm Returns the dependent pair (A;t) where t is the
term whose syntax is tm and A it’s type

tmUnquoteTyped A tm Returns the term whose syntax is tm and checks
that it is indeed of type A

Table 1 Main Template-Coq commands

Run TemplateProgram (foo ← tmDefinition "foo" 12 ;;
tmDefinition "bar" (foo +1)).

Remark that tmDefinition expect any Coq term, not necessarily one of type term.1

The program below asks the user to provide an inhabitant of nat (here we provide2

3 * 3), records it in the lemma foo, prints its normal form, and records the syntax of3

its normal form in foo_nf_syntax (hence of type term). We use Program’s obligation4

mechanism6 to ask for missing proofs, running the rest of the program when the user5

finishes providing it. This enables the implementation of interactive plugins.6

6 In Coq, a proof obligation is a goal which has to be solved to complete a definition.
Obligations were introduced by Sozeau (2007) in the Program mode.

The MetaCoq Project 31

Run TemplateProgram (foo ← tmLemma "foo" N ;;
nf ← tmEval all foo ;;
tmPrint "normal form: " ;; tmPrint nf ;;
nf_ ← tmQuote nf ;;
tmDefinition "foo_nf_syntax" nf_).

Next Obligation.
exact (3 * 3).

Defined.

The basic commands of Template-Coq described in 3.1 are implemented with1

such TemplateProgram. For instance:2

Definition tmMkDefinition id (tm : term) : TemplateMonad unit
B tmBind (tmUnquote tm)

(fun t’ ⇒ tmBind (tmEval all (my_projT2 t’))
(fun t’’ ⇒ tmBind (tmDefinition id t’’)
(fun _ ⇒ tmReturn tt))).

4 Writing Coq plugins in Coq3

The reification of commands of Coq allows users to write Coq plugins directly inside4

Coq, without requiring another language like OCaml or an external compilation phase.5

In this section, we describe four examples of such plugins: (i) a plugin that adds6

a constructor to an inductive type, (ii) a certified tauto tactic which solves goals7

of propositional logic, (iii) a plugin for extending Coq via syntactic translation as8

advocated in (Boulier et al., 2017) and (iv) a plugin extracting Coq functions to9

weak-call-by-value λ-calculus.10

A fifth application of MetaCoq and its specification of typing is presented by11

Zaliva and Sozeau (2019) and further explored by Annenkov and Spitters (2019):12

the ability to get "for free" the metatheory of domain-specific languages that can be13

interpreted into CIC, by proving the correctness of semantics-preserving interpretations14

from type-correct source language terms to Coq terms. This in turn justifies reusing15

the proof-assistant infrastructure of Coq to reason on these languages when they are16

shallowly embedded. In Zaliva and Sozeau (2019) this is used to verify a shallow-to-deep17

embedding of a strongly-typed parallel programming language, to further compile it. In18

Annenkov and Spitters (2019), they develop deep and shallow embeddings of a smart19

contract language for blockchains and relate the two by a soundness theorem: this20

opens the possibility to write a tailor-made and provably sound verification condition21

generator for this language. The verification of the tauto tactic also illustrates this idea,22

albeit at a smaller scale. Finally, specifications of typing and evaluation for CIC can be23

used to verify compilers from Coq to other languages, as developed in the CertiCoq24

project (Anand et al., 2017).25

4.1 A Toy Example: A Plugin to Add a Constructor26

Let us go back to the example depicted in the introduction. Given an inductive27

type I without indices, we want to declare a new inductive type I’ which corre-28

sponds to I plus one more constructor. We provide examples other than the syntax of29

32 Sozeau et al.

lambda calculus mentioned in the introduction , e.g., with mutual inductives, in the file1

test-suite/add constructor.v of the GitHub repository of the MetaCoq project.2

To define this plugin using MetaCoq, the main function is add_constructor which3

takes an inductive type ind (whose type is not necessarily Type if it is an inductive4

family), a name idc for the new constructor and the type ctor of the new constructor,5

abstracted with respect to the new inductive.6

Definition add_constructor (tm : term) (idc : ident) (type : term)
: TemplateMonad unit
B match tm with

| tInd ind0 _ ⇒
decl ← tmQuoteInductive (inductive_mind ind0) ;;
let ind’ B add_ctor decl ind0 idc type in
tmMkInductive’ ind’

| _ ⇒ tmPrint tm ;; tmFail " is not an inductive"
end.

It works in the following way. First, the inductive type tm (which was obtained7

by quotation through the <% _ %> notation) is expected to be a tInd constructor8

otherwise the function fails. Then the declaration of this inductive is obtained by calling9

tmQuoteInductive, and an auxiliary function is called to add the constructor to the10

declaration. The new inductive type is added to the current context with tmMkInductive.11

It remains to define the add_ctor auxiliary function to complete the definition of the12

plugin. It takes a mutual_inductive_body which is the declaration of a block of mutual13

inductive types and returns another mutual_inductive_body.14

Definition add_ctor (mind : mutual_inductive_body) (ind0 : inductive)
(idc : ident) (ctor : term) : mutual_inductive_body

B let i0 B inductive_ind ind0 in
{| ind_npars B mind.(ind_npars) ;

ind_bodies B map_i (fun (i : nat) (ind : inductive_body) ⇒
{| ind_name B tsl_ident ind.(ind_name) ;

ind_type B ind.(ind_type) ;
ind_kelim B ind.(ind_kelim) ;
ind_ctors B

let ctors B map (fun ’(id, t, k) ⇒ (tsl_ident id, t, k))
ind.(ind_ctors) in

if Nat.eqb i i0 then
let n B length mind.(ind_bodies) in
let typ B try_remove_n_lambdas n ctor in
ctors ++ [(idc, typ, _)]

else ctors;
ind_projs B ind.(ind_projs) |})

mind.(ind_bodies) |}.

The declaration of the block of mutual inductive types is a record. The field ind_bodies15

contains the list of declarations of each inductive of the block. We see that most of the16

fields of the records are propagated, except for the names which are translated to add17

some primes and ind_ctors, the list of types of constructors, for which, in the case of18

the relevant inductive (i0 is its number), the new constructor is added.19

https://github.com/MetaCoq/metacoq/blob/coq-8.9/test-suite/add_constructor.v

The MetaCoq Project 33

4.2 A Certified Version of the tauto Tactic1

Let us now illustrate the use of MetaCoq to define certified tactics. To this end, we will2

consider the tauto which solves tautological goals of intuitionistic propositional logic7.3

The complete definitions can be found in the file examples/tauto.v of the GitHub4

repository of the MetaCoq project.5

The idea is that the tactic is based on a decision procedure proven in Coq of6

a reified version of the formula. This reification itself is performed using MetaCoq7

instead of the tactic language of Coq, which allows us to also certify in Coq that this8

reification process is correct, and under which assumptions.9

The type of a reified propositional formula is the following inductive type:10

Inductive form B
Fa | Tr | Var (x:var) | Imp (f1 f2:form) | And (f1 f2:form) | Or (f1 f2:form).

We consider formulas built from false and true propositions, variables, implication,11

conjunction and disjunction.12

This inductive type describes the syntax of a propositional formula, defining its13

semantics requires a notion of “universe” prop of propositional formulas, and interpreta-14

tion for the connectors of the logic. We define a generic type class for types including15

propositional connectives:16

Class Propositional_Logic prop B
{ Pfalse : prop;

Ptrue : prop;
Pimpl : prop → prop → prop;
Pand : prop → prop → prop;
Por : prop → prop → prop}.

Then, giving any instances of Propositonal_logic type class, it is possible to define17

the semantics of a propositional formula, given a valuation l:var→ A for propositional18

variables, by a fixed-point on the syntax:19

Fixpoint semGen A ‘{Propositional_Logic A} f (l:var→ A) B
match f with

| Fa ⇒ Pfalse
| Tr ⇒ Ptrue
| Var x ⇒ l x
| Imp a b ⇒ Pimpl (semGen A a l) (semGen A b l)
| And a b ⇒ Pand (semGen A a l) (semGen A b l)
| Or a b ⇒ Por (semGen A a l) (semGen A b l)
end.

Of course, the canonical instance of Propositonal_logic is provided by Prop, the20

universes of Coq propositions itself. This is also sometimes called the standard semantics21

of propositional logic.22

7 The tactic defined in Coq is slightly more general as it allows to consider arbitrary non-
propositional formulae as black boxes but this is rather a matter of instrumentation, as it just
amounts to some abstraction before applying the tactic.

https://github.com/MetaCoq/metacoq/blob/coq-8.9/examples/tauto.v

34 Sozeau et al.

Instance Propositional_Logic_Prop : Propositional_Logic Prop B
{| Pfalse B False; Ptrue B True; Pand B and; Por B or;

Pimpl B fun A B ⇒ A → B |}.
Definition sem B semGen Prop.

But in our work, we can also consider the semantics of a propositional formula in1

the syntax, by providing an instance of Propositonal_logic for term. First, we need2

to reify the basic connectors of the standard semantics, for instance propositional3

conjonction:4

Quote Definition Mand B and.

and then we can directly provide the semantics of propositional formula in Meta-5

Coq:6

Instance Propositional_Logic_MetaCoq : Propositional_Logic term B
{| Pfalse B MFalse; Ptrue B MTrue; Pand B fun P Q ⇒ mkApps Mand [P;Q];

Por B fun P Q ⇒ mkApps Mor [P;Q]; Pimpl B fun P Q ⇒ tImpl P Q |}.
Definition Msem B semGen term.

In the following, the standard semantics will be used to prove the correctness of the7

decision procedure, and the semantics in MetaCoq will be used to prove the correctness8

of reification.9

Remark 5 Note that the only hole remaining in the certification of the tactic is in10

the fact that we can not prove that “quoting” the standard semantics is equivalent to11

considering the MetaCoq semantics of the quoted connectors. This could only be done12

in a variant of CIC which includes quoting and unquoting as primitive constructions, like13

in the system HOL-light QE of Carette et al. (2018). Their system extends HOL with a14

quoting operator, with non-trivial consequences to the mechanism of substitution in15

the language. Extending dependent type theories with such strong reflection principles16

is still an open problem.17

In order to prove the correctness of the decision procedure, we introduce the notion18

of validity of a sequent in the standard semantics, where a sequent is simply a list of19

hypothesis and a conclusion.20

Record seq B mkS { hyps : list form; concl : form }.

Definition valid s B
∀ l, (∀ h, In h (hyps s) → sem h l) → sem (concl s) l.

Validity says that if the hypotheses are valid, then the conclusion is also, and this for21

any possible valuation. From a proof of validity, it is thus possible to recover a proof22

of the original formula by applying it to the canonical valuation which associates the23

corresponding propositional variable in Prop of the variable in form.24

Definition can_val_Prop (Γ : list Prop) (v : var) : Prop B

25

The MetaCoq Project 35

match nth_error Γ v with
| Some P ⇒ P
| None ⇒ False
end.

1

The rest of the work amounts to building the decision procedure tauto_proc, which2

takes a sequent (and some fuel to avoid complication with the termination argument)3

and returns either Valid if the formula is valid or CounterModel if it is not, in addition4

to an Abort value if it runs out of fuel.5

Inductive result B Valid | CounterModel | Abort.

Definition tauto_proc : nat → seq → result.

We do not detail this procedure as it is not the point of this paper and let the interested6

reader refer to the source code. The only important thing is that we can prove the7

correctness of the procedure by the following lemma:8

Lemma tauto_sound n s : tauto_proc n s = Valid → valid s.

We now turn to the reification part of the tactic. Given an arbitrary term P of type9

term in MetaCoq, it is possible to define the following reification function:10

Equations reify (Σ : global_env_ext) (Γ : context) (P : term) : option form
by wf (tsize P) lt B
reify Σ Γ P with inspect (decompose_app P) B {
| @exist (hd, args) e1 with hd B {

| tRel n with nth_error Γ n B {
| Some decl ⇒ Some (Var n) ;
| None ⇒ None
} ;

| tInd ind []
with string_dec ind.(inductive_mind) "Coq.Init.Logic.and" B {
| left e2 with args B {

| [A ; B] ⇒
af ← reify Σ Γ A ;;
bf ← reify Σ Γ B ;;
ret (And af bf) ;

| _ ⇒ None
} ;
(* other inductive cases are similar *)

| tProd na A B ⇒
af ← reify Σ Γ A ;;
bf ← reify Σ Γ (subst0 [tRel 0] B) ;;
ret (Imp af bf) ;

| _ ⇒ None
}

}.

This function is defined by well-founded recursion on the size of the input term (term11

is nested with the type of lists for its application nodes, mutual fixpoint blocks and12

branches of cases). We profit from Equations (Sozeau and Mangin, 2019) support for13

well-founded recursion and dependent pattern-matching to define it concisely. The main14

36 Sozeau et al.

interest of programming reification directly on MetaCoq terms is that we can prove1

the correctness of reification in the sense that taking the canonical semantics of the2

reified formula is equal to the original term.3

Note here that the canonical valuation for the semantics in MetaCoq is given by4

returning the DeBruijn variable directly.5

Definition can_val (v : var) : term B tRel v.

Definition reify_correct :
∀ Σ Γ P,

well prop Σ Γ P →
∃ φ, reify Σ Γ P = Some φ ∧ Msem φ can_val = P.

One can also make the reification much more clever if desired, and correspondingly6

extend its soundness theorem, we only present here a basic instance of the technique.7

Of course, the correctness of the reification, in particular the existence of a reified8

formula depends on the shape of the term P given as input. Here, we define the well prop9

predicate, which can be seen as a specification the domain of formulas of our tauto10

tactic.11

The MetaCoq Project 37

Definition tImpl (A B : term) B tProd nAnon A (lift0 1 B).
Definition tAnd (A B : term) B tApp Mand [A ; B].
Definition tOr (A B : term) B tApp Mor [A ; B].

Inductive well prop Σ Γ : term → Type B
| well prop_False : well prop Σ Γ MFalse
| well prop_True : well prop Σ Γ MTrue
| well prop_Rel n :

Σ ;;; Γ ` tRel n : MProp →
well prop Σ Γ (tRel n)

| well prop_Impl A B :
well prop Σ Γ A →
well prop Σ Γ B →
well prop Σ Γ (tImpl A B)

(* similar for tAnd and tOr *)

Coarsely, this predicate just amounts to specify which terms corresponds to a propo-1

sitional formula (where its initial universal quantification has been removed). It is2

important to notice here that the case of a variable relies on the typing judgment of3

MetaCoq Σ ;;; Γ ` tRel n : MProp, therefore, we reuse in the specification of the4

tactic, the specification of the metatheory itself.5

Now, it just amounts to pack the decision procedure and the reification process6

altogether. We first define the function inhabit_formula on a reified formula φ, which7

either return a proof of the interpretation of the formula (in Prop) or a proof of the8

special proposition NotSolvable recording the reason of failure of the tactic.9

Inductive NotSolvable (s: string) : Prop B notSolvable: NotSolvable s.

Definition inhabit_formula gamma φ Γ :
match reify (empty_ext []) gamma φ with
| Some phi ⇒

match tauto (Top.size phi) {| hyps B []; concl B phi |} with
| Valid ⇒ sem (concl {| hyps B []; concl B phi |}) (can_val_Prop Γ)
| _ ⇒ NotSolvable "not a valid formula" end

| None ⇒ NotSolvable "not a formula" end.

Finally, using a bit of Ltac to call the quoting mechanism of MetaCoq, we can define10

the tauto tactic.11

Ltac Mtauto l T H B
let k x B
pose proof (let φ B extract_form x 0 in

inhabit_formula (Prop_ctx (snd φ)) (fst φ) l) as H
in quote_term T k.

Ltac tauto_tactic B
let L B fresh "L" in let P B fresh "P" in let H B fresh "H" in
match goal with | ` ?T ⇒

extract_form_tac ltac:(fun l ⇒ pose (LBl); pose (PBT)) (@nil Prop) end;
Mtauto L ltac:(eval compute in P) H;
first [match goal with | H : NotSolvable ?s ` _ ⇒ fail 2 s end

| exact H].

38 Sozeau et al.

The auxiliary function extract_form and auxiliary tactic extract_form_tac are here to1

perform the right amount of introduction of propositional variables to get a formula2

without quantification.3

The tactic tauto can now be used as any other tactic in Coq.4

Lemma test : ∀ (A B C:Prop), (A→ C)→ (B→ C)→ A\/B→ C.
tauto_tactic.

Qed.

In case the tactic is failing, we get an error message which explains the reason of the5

failure.6

Lemma test2 : ∀ (A B C:Prop), (A→ C)→ (B→ C)→ A\/B→ B.
Fail tauto_tactic.

Tactic failure: "not a valid formula".

Using more instrumentation, we could get better error messages, and even produce7

explicit counter models when the formula is not valid. Another possible improvement8

of the certification is to prove its completeness.9

4.3 The Program Translations Plugin10

The following plugin expects a syntactic translation as defined in Boulier et al. (2017).11

It makes it possible to manipulate translated terms and, ultimately, to justify some12

logical extensions of Coq by postulating safe axioms. It is implemented in the file13

translations/translation utils.v.14

Two examples of syntactic translations are presented here: the parametricity trans-15

lation, and a “times bool” translation which justifies the negation of functional exten-16

sionality. A few other examples are available in the directory translations.17

In full generality, a translation is given by two functions [] and J K from Coq
terms to Coq terms such that they enjoy at least computational soundness and typing
soundness:

M ≡ N
[M] ≡ [N]

Γ `M : A

JΓ K ` [M] : JAK

The plugin supposes that such translation has been defined by the user and provides18

four commands:19

– Translate which computes the translation [M] of a term M .20

– TranslateRec which computes the translation of a term and of all constants on which21

it depends.22

– Implement. This command computes the translation JAxK of a type Ax and asks the23

user to inhabit JAxK in proof mode. If the user succeeds (but not before), it declares24

an axiom of type Ax. If the program translation is sound (cf. Boulier et al. (2017)),25

it ensures that the axiom does not break consistency.26

– ImplementExisting which is used to provide the translation of some terms by hand.27

It can be used to “implement” an existing axiom. It is also useful to experiment28

with translations only partially defined; for instance to provide the translation of a29

particular inductive type without defining the translation of all inductive types.30

https://github.com/MetaCoq/metacoq/blob/coq-8.9/translations/translation_utils.v

The MetaCoq Project 39

The translation that the user has to provide is given by the following record:1

2

Class Translation B
{ tsl_id : ident → ident ;

tsl_tm : tsl_context → term → tsl_result term ;
tsl_ty : option (tsl_context → term → tsl_result term) ;
tsl_ind : tsl_context → string → kername → mutual_inductive_body

→ tsl_result (tsl_table * list mutual_inductive_body) }.

This record is a Class so that, using type classes inference, when a translation is provided,3

it is automatically found by Coq.4

– tsl_ident is how identifiers are translated. It will always be (fun id ⇒ id ++ "t")5

for us.6

– tsl_tm is the main translation function implementing []. It takes a term and returns7

a term. The translation context contains the global environment and the previously8

translated constants, see below. The result is in the tsl_result monad which is an9

error monad:10

Inductive tsl_error B
| NotEnoughFuel | TranslationNotFound (id : ident)
| TranslationNotHandled | TypingError (t : type_error).

The returned term can be of any type. tsl_tm is used by the commands Translate11

and TranslateRec.12

– tsl_ty is the function translating types J K. This time, the returned term is expected13

to be a type. This function is used by the commands Implement and ImplementExisting14

which are not available when tsl_ty is not provided. This is the case for models15

which do not translate a type by a type (for instance: the standard model, the setoid16

model, . . .).17

– Last, tsl_ind is the function translating inductive types. It returns:18

– an extended translation table with the translations of the inductive type and its19

constructor;20

– a list of inductive declarations which are used in the translation of the inductive21

type. Generally, an inductive is translated either by itself (in which case the list22

is empty), or by a new inductive whose constructors are the translation of the23

original constructors (in which case the list is of length one).24

The second argument of tsl_ind is technical: it is the path to the module in which25

the new inductives will be declared.26

Translation context. In the translation plugin, the constants (definitions, axioms,27

inductive types and constructors), are translated one by one. They are recorded in a28

translation table so that the constants are not retranslated each time they appear. This29

association table is implemented as the list of the translated constants together with30

their translation.31

Definition tsl_table B list (global_reference * term).

Thus, the tConst case in the tsl_tm function is generally implemented by:32

40 Sozeau et al.

[t]0 = t

[x]1 = xt

[∀(x : A).B]1 = λf.∀(x : [A]0)(xt : [A]1x).[B]1(f x)

[λ(x : A).t]1 = λ(x : [A]0)(xt : [A]1x).[t]1

JΓ, x : AK = JΓ K, x : [A]0, xt : [A]1 x

Γ ` t : A

JΓ K ` [t]0 : [A]0

JΓ K ` [t]1 : [A]1 [t]0

Fig. 3 Unary parametricity translation and soundness theorem, excerpt (from Bernardy et al.
(2012))

| tConst s univs ⇒ lookup_tsl_table table (ConstRef s)

and similarly for tInd and tConstruct.1

Some translations that we implemented need to access the global environment in2

which the considered term makes sense. That’s why we define a translation context to3

be a global environment and a translation table:4

Definition tsl_context B global_context * tsl_table.

4.3.1 Parametricity5

Let’s describe the use of the plugin for the parametricity translation. Its implementation6

can be found in translations/param_original.v.7

The translation that we use here follows Reynolds’parametricity (Reynolds, 1983;8

Wadler, 1989). We follow the already known approaches of parametricity for dependent9

type theories (Bernardy et al., 2012; Keller and Lasson, 2012). We get an alternative10

implementation of Lasson’s plugin ParamCoq8. For the moment, only the unary case11

is implemented. The translation is reminded in Figure 3.12

The two components of the translation []0 and []1 are implemented by two13

recursive functions tsl param0 and tsl param1.14

Fixpoint tsl param0 (n : nat) (t : term) {struct t} : term B
match t with
| tRel k ⇒ if k >= n then (* global variable *) tRel (2*k-n+1)

else (* local variable *) tRel k
| tProd na A B ⇒ tProd na (tsl param0 n A) (tsl param0 (n+1) B)
| _ ⇒ ...
end.

Fixpoint tsl param1 (E : tsl_table) (t : term) : term B

15

8 https://github.com/parametricity-coq/paramcoq

https://github.com/parametricity-coq/paramcoq

The MetaCoq Project 41

match t with
| tRel k ⇒ tRel (2 * k)
| tSort s ⇒ tLambda (nNamed "A") (tSort s)

(tProd nAnon (tRel 0) (tSort s))
| tProd na A B ⇒

let A0 B tsl param0 0 A in let A1 B tsl param1 E A in
let B0 B tsl param0 1 B in let B1 B tsl param1 E B in
tLambda (nNamed "f") (tProd na A0 B0)
(tProd na (lift0 1 A0)

(tProd (tsl_name na) (subst_app (lift0 2 A1) [tRel 0])
(subst_app (lift 1 2 B1) [tApp (tRel 2) [tRel 1]])))

| tConst s univs ⇒ lookup_tsl_table’ E (ConstRef s)
| _ ⇒ ...
end.

1

In Figure 3, the translation is presented in a named setting. As a consequence, the2

introduction of new variables does not change references to existing ones and that’s3

why []0 is the identity. In the de Bruijn setting of Template-Coq, the translation4

has to take into account the shift induced by the duplication of the context. Therefore,5

the implementation tsl param0 of []0 is no longer the identity. The argument n of6

tsl param0 represents the de Bruijn level from which the variables have to be duplicated.7

There is no need for such an argument in tsl param1, the implementation of []1,8

because in this function all variables are duplicated. The implemented cases include9

pattern matching. Fixed-points are still work in progress.10

Given those two functions, we can already translate some terms. For example, the11

translation of the type of polymorphic identity functions can be obtained by:12

Definition ID B ∀ A, A → A.
Run TemplateProgram (Translate emptyTC "ID").

emptyTC is the empty translation context. This defines IDt to be:13

fun f : ∀ A, A → A ⇒ ∀ A (At : A → Type) (x : A), At x → At (f A x)

We have also implemented tsl_mind_body the translation of inductive types. For14

instance, the translation of the equality type eq produces the following inductive:15

16

Inductive eqt A (At : A → Type) (x : A) (xt : At x)
: ∀ H, At H → x = H → Prop B
| eq_reflt : eqt A At x xt x xt eq_refl.

Then [eq]1 is given by eqt and [eq_refl]1 by eq_reflt.17

The translation of the declarations of a block of mutual inductive types are similar18

declarations, with the arities and the types of constructors translated accordingly.19

20

All put together, the translation is declared by:21

Instance param : Translation B

22

42 Sozeau et al.

{| tsl_id B fun id ⇒ id ++ "t" ;
tsl_tm B fun ΣE t ⇒ ret (tsl param1 (snd ΣE) t) ;
tsl_ty B None ;
tsl_ind B fun ΣE mp kn mind ⇒ ret (tsl_mind_body (snd ΣE) mp kn mind)
|}.

1

For each constant c of type A, it is [c]1 (of type [A]1 [c]0) which is recorded in the2

translation table. There is no implementation of tsl_ty because there is no meaningful3

function J K for this presentation of parametricity.4

Example. With this translation, the only commands that can be used are Translate and5

TranslateRec. Here is an illustration of their use coming from the work of Lasson on the6

automatic proofs of ω-groupoid laws using parametricity Lasson (2014). We show that all7

functions which have type ∀ (A:Type) (x y:A). x = y → x = y are identity functions.8

Let IDp be this type. First we compute the translation of IDp using TranslateRec9

.10

Run TemplateProgram (table ← TranslateRec emptyTC "IDp" ;;
tmDefinition "table" table).

The second line defines table as the new translation context, so that we can reuse it11

later. Then we show that every parametric function of type IDp is pointwise equal to12

the identity by using the predicate fun y ⇒ x = y.13

Lemma param_IDp (f : IDp) : IDpt f → ∀ A x y p, f A x y p = p.
Proof.

intros H A x y p. destruct p.
destruct (H A (fun y ⇒ x = y) x eq_refl

x eq_refl eq_refl (eq_reflt _ _)).
reflexivity.

Qed.

Let’s define a function myf B p 7→ p�p-1 �p and derive its parametricity proof:14

Definition myf: IDp B fun A x y p ⇒ eq_trans (eq_trans p (eq_sym p)) p.
Run TemplateProgram (TranslateRec table "myf").

We reuse here table in which the translation of equality has been recorded. It is then15

possible to deduce automatically that p � p-1 � p = p for all p:16

Definition free_thm_myf : ∀ A x y p, myf A x y p = p
B param_IDp myf myft.

4.3.2 Times bool translation17

We describe here the use of the plugin with the times bool translation. This translation18

is a model of Coq9 which negates function extensionality. It will give an example19

9 In fact, this translation is not completely a model of Coq: Coq features η-conversion on
functions, which is incompatible with this translation.

The MetaCoq Project 43

of the use of the command Implement. This example can be found in translations/1

times_bool_fun.v.2

The translation is defined as follows on variables and dependent products (see
Boulier et al. (2017) for a more complete description):

[x]f := x [λx : A. M]f := (λx : [A]f . [M]f , true)

[M N]f := π1([M]f) [N]f [∀x : A. B]f := (∀x : [A]f . [B]f)× B

For this translation, terms and types are translated the same way, hence J Kf = []f .3

Even if the translation is very simple, this time, going from the ideal world of4

calculus of constructions to the real world of Coq is not as simple as for the previous5

example (parametricity). Indeed, when written in Coq, the translation is no longer6

fully syntax directed. In Coq, pairs (M, N) are typed, M and N are not the only7

arguments, their types are also required:8

pair : ∀ (A B : Type), A → B → A × B

Hence, in the case of lambdas in the definition of the translation, those types have to9

be provided:10

[fun (x:A) ⇒ t] B pair (∀ x:[A]. ?T) bool (fun (x:[A]) ⇒ [t]) true

true is always of type bool, but for the left hand side term, we cannot recover the type11

?T from the source term. There is thus a mismatch between the lambdas which are not12

fully annotated and the pairs which are. There is a similar issue with applications and13

projections, but this one can be circumvented using primitive projections which are14

untyped.15

A solution is to use the type inference algorithm of Section 2.7 to recover the missing16

information.17

[fun (x:A) ⇒ t] B let B B infer Σ (Γ, x:[A]) t in
pair (∀ (x:[A]). [B]) bool (fun (x:[A]) ⇒ [t]) true

Here we need to have kept track of the global context Σ and of the local context Γ .18

The translation function []f is thus implemented by:19

Fixpoint tsl_rec (fuel : nat) (Σ : global_context) (E : tsl_table)

20

44 Sozeau et al.

(Γ : context) (t : term) {struct fuel}
: tsl_result term B
match fuel with
| O ⇒ raise NotEnoughFuel
| S fuel ⇒
match t with
| tRel n ⇒ ret (tRel n)
| tSort s ⇒ ret (tSort s)

| tProd n A B ⇒ A’ ← tsl_rec fuel Σ E Γ A ;;
B’ ← tsl_rec fuel Σ E (Γ ,, vass n A) B ;;
ret (timesBool (tProd n A’ B’))

| tLambda n A t ⇒ A’ ← tsl_rec fuel Σ E Γ A ;;
t’ ← tsl_rec fuel Σ E (Γ ,, vass n A) t ;;
match infer Σ (Γ ,, vass n A) t with
| Checked B ⇒

B’ ← tsl_rec fuel Σ E (Γ ,, vass n A) B ;;
ret (pairTrue (tProd n A’ B’) (tLambda n A’ t’))

| TypeError t ⇒ raise (TypingError t)
end

...
end
end.

1

We use a fuel argument because of the non-structural recursive call on B in the case of2

lambdas.3

We also implemented the translation of some inductive types. For instance, the4

translation of the inductive foo generates the new inductive foot:5

Inductive foo B
| bar : (nat → foo) → foo.

Inductive foot B
| bart : (natt → foot) × bool → foot

and the translation is extended by:6

[foo] = foot
[bar] = (bart ; true)

Example. Let’s demonstrate how to use the plugin to negate function extensionality.7

The type of the axiom we will add to our theory is:8

Definition NotFunext B (∀ A B (f g:A→ B), (∀ x:A, f x = g x) → f = g) →
False.

We use TranslateRec to get the translation of eq and False and then we use Implement9

to inhabit the translation of the NotFunext:10

The MetaCoq Project 45

Run TemplateProgram (TC ← TranslateRec emptyTC NotFunext ;;
Implement TC "notFunext" NotFunext).

Next Obligation.
tIntro H.
tSpecialize H unit. tSpecialize H unit.
tSpecialize H (fun x ⇒ x; true). tSpecialize H (fun x ⇒ x; false).
tSpecialize H (fun x ⇒ eq_reflt _ _; true).
inversion H.

Defined.

The Implement command generates an obligation whose type is the translation of1

NotFunext, that is:2

((∀ A, (∀ B, (∀ f : (A → B) × bool, (∀ g : (A → B) × bool,
((∀ x : A, eqt B (π1 f x) (π1 g x)) × bool → eqt ((A → B) × bool) f g)
× bool) × bool) × bool) × bool) × bool → Falset) × bool

There are a lot of “× bool”, that’s why it is convenient that this type is automatically3

computed. We fill the obligation with the tactics tIntro and tSpecialize which are4

variants of intro and specialize dealing with the boolean:5

Tactic Notation "tSpecialize" ident(H) uconstr(t)
B apply π1 in H; specialize (H t).

Tactic Notation "tIntro" ident(H)
B refine (fun H ⇒ _; true).

After the obligation is closed (and not before), an axiom notFunext of type NotFunext is6

declared in the current environment, as it would have been done by:7

Axiom notFunext : NotFunext.

A constant notFunextt whose body is the term provided in the obligation is also declared8

and the mapping (notFunext, notFunextt) is added in the translation table.9

If the translation is correct, the consistency of Coq is preserved by the addition10

of this axiom. Let’s insist on the fact that it is not fully the case because Coq has11

η-conversion, which is incompatible with this translation.12

4.4 Extraction to λ-calculus13

As a last example, we show how Template-Coq can be used to extract Coq functions14

to the weak-call-by-value λ-calculus (Forster and Kunze, 2019). It is folklore that every15

function definable in constructive type theory is computable in the classical sense, i.e.,16

in a model of computation. While this statement can not be proven as a theorem inside17

the type theory of Coq, similar to parametricity, it is possible to give a computability18

proof in Coq for every concrete defined function. The translation from Coq functions19

to terms of the λ-calculus is essentially the identity, since the syntax of Coq can be20

seen as a feature-rich, type-decorated λ-calculus. Special care only has to be taken for21

fixed-points and inductive types (we do not cover co-inductives).22

46 Sozeau et al.

As a concrete target language we use the (weak) call-by-value λ-calculus as used
by Forster and Smolka (2017). The syntax is defined using de Bruijn indices:

s, t, u, v : lterm ::= n | s t | λs (n : nat)

We follow their approach in employing Scott’s encoding (Mogensen, 1992; Jansen, 2013)1

to incorporate inductive types and a fixed-point combinator ρ for recursion.2

For instance, the Scott encoding of booleans is defined as εbool true = λxy.x and3

εbool false = λxy.y, or λλ1 and λλ0 using de Bruijn indices, which we will avoid for4

examples. For natural numbers, the encodings are εnat 0 = λzs.z and εnat (S n) =5

λzs.s(εnat n). Note that Scott encodings allow very direct encodings of matches: The6

Coq term fun n : nat ⇒ match n with 0 ⇒ ... | S n’ ⇒ ... end can be directly7

translated to λn. n (. . .) (λn′. . . .). We provide a command tmEncode which generates8

the Scott encoding function for an inductive datatype automatically. We restrict the9

generation to simple inductive types of the form10

Inductive T (X1 ... Xp : Type) : Type B
... | constr_i_T : A1 → ... → An → T X1 ... Xp |

where Aj for 1 ≤ j ≤ n is either encodable or exactly T X1 ... Xn. For such a fully11

instantiated inductive type B = T X1 ... Xp with n constructors we define the encoding12

function εB as follows:13

fix f (b : B) B
match b with
| constr_i_T (x1 : A1) ... (xn : An) ⇒ λy1 . . . yp.yi (f1 x1) ... (fn xn)
| ...
end

where fj for 1 ≤ j ≤ n is a recursive call f if Aj = B, or εAj otherwise. To be able to14

obtain the encoding function εAj, we could use translation tables as before. Instead,15

we demonstrate an alternative way using a type class of encodable types defined as16

follows:17

Class encodable (A : Type) B enc_f : A → lterm.

Then, to generate, for instance, the Scott encoding of the type lterm itself, one first18

has to generate the Scott encoding for natural numbers:19

Run TemplateProgram (tmEncode "nat_enc" nat).
Run TemplateProgram (tmEncode "lterm_enc" lterm).

This will define nat_enc : encodable nat and lterm_enc : encodable lterm. The second20

command uses the tmInferInstance operation of the TemplateMonad to find the instance of21

encodable nat defined before. If no instance is found, an obligation of type encodable nat22

is opened.23

To extract functions, we proceed similarly. We restrict the extraction to a simple24

polymorphic subset of Coq without dependent types. We call a type A admissible if25

A is of the form ∀X1 . . . Xn : Type. B1 → · · · → Bm with Bm 6= Type. Terms a : A26

are admissible if A is admissible and if all constants c : C that are proper subterms27

The MetaCoq Project 47

of a are either (a) admissible and occur syntactically on the left hand side of an1

application fully instantiating the type-parameters of c with constants or (b) of type2

Type and occur syntactically on the right hand side of an application instantiating type3

parameters. For instance, the definition of the function @map A B : list A → list B is4

admissible:5

Definition map (A B : Type) : (A → B) → list A → list B B fun f ⇒
fix map l B match l with | [] ⇒ @nil B | a :: t ⇒ @cons B (f a) (map l)

end.

We again define a type class to look up previously extracted terms:6

Class extracted {A : Type} (a : A) B int_ext : lterm.

For constants (and constructors) occurring as subterms the tmInferInstance operation7

is used again to obtain the respective extractions. We define commands tmExtract and8

tmExtractConstr which can be used to extract functions and constructors. To extract9

the full polymorphic map function, we use Coq’s section mechanism:10

Section Fix_X_Y.
Context { X Y : Type }. Context { encY : encodable Y }.
Run TemplateProgram (tmExtractConstr "nil_lterm" (@nil X)).
Run TemplateProgram (tmExtractConstr "cons_lterm" (@cons X)).
Run TemplateProgram (tmExtract "map_lterm" (@map X Y)).

End Fix_X_Y.

This will define map_lterm : ∀ X Y {H : encodable Y}, extracted (@map X Y) and regis-
ter it as an instance of the type class extracted. The concrete λ-term the extraction
computes is

λ(ρ(λλ(0(ε nil)(λλ((ε cons)(4 1)(3 0))))))

or, in a more readable form with names:

λf.ρ(λm.λl.(l(ε nil)(λa.λt.((ε cons)(f a)(m t)))))

To prove that the extracted terms are indeed correct, we provide a logical relation11

ta ∼ a read as ta computes a and a set of Ltac tactics which will automatically establish12

this relation. We wrap extracted terms together with the relation into a type class13

computable. We use MetaCoq’s ability to run monadic operations inside tactics to14

implement a tactic extract which uses tmExtract and the Ltac tactics to allow for15

automatic computability proofs. Since this is not directly related to MetaCoq, we16

omit the details here and refer to Forster and Kunze (2019).17

To automatically verify terms, we again use tmInferInstance to obtain the correctness18

proofs for previously extracted constants or constructors. The correctness lemma for19

fix w.r.t weak call-by-value reduction � can be stated in general as ρ u v �∗ u (ρ u) v20

for closed abstractions u, v. For match, the correctness lemmas depend on the type of21

the discriminee and we provide an operation tmGenEncode generating both the encoding22

function and the correctness lemma for the corresponding match.23

For instance, in order to prove the computability of addition, a user has to generate24

the encoding of natural numbers and extract the successor function first:25

48 Sozeau et al.

Run TemplateProgram (tmGenEncode "nat_enc" nat).
Hint Resolve nat_enc_correct : Lrewrite.

Instance lterm_S : computable S.
Proof. extract constructor. Qed.

Instance lterm_add : computable add.
Proof. extract. Qed.

5 Running plugins natively in OCaml1

The approach of writing Coq plugins in Coq, as illustrated above, has several ad-2

vantages. First, functions written in Coq are amenable to verification, and second,3

plugins can be written and iterated on quickly within a Coq buffer. However, one4

major disadvantage is that Coq programs can not leverage efficient representations,5

algorithms, and compilers available for other languages, which makes Coq programs6

comparatively slow. This is especially a problem for our plugins which process the raw7

syntax of terms (Ast.term) which can be very verbose.8

To mitigate the performance problem, it is common practice to run verified Coq9

programs after extraction to OCaml. Extraction gives us access to the efficiency of10

native code, and provides a declarative way to replace inefficient Coq types with11

efficient, machine-optimized types and operations in OCaml. During extraction, the12

Coq type Ast.term (figure 1) is extracted to an OCaml datatype, say coq_term_ext,13

and programs operate on that representation. To interface these computations with the14

Coq internals, which is necessary for plugins, we implemented functions that convert15

Coq’s kernel representation of terms, i.e., constr, to coq_term_ext. Just the translation16

in this one direction provides sufficient functionality to implement plugins such as the17

CertiCoq compiler which translates Coq terms into CompCert’s Clight intermediate18

language. More sophisticated plugins, such as the parametricity plugin, need to use19

both reification and reflection in a dynamic way. This poses the challenge of providing20

and implementation of TemplateMonad in OCaml so that it can be run after extraction.21

Unfortunately, the use of the meta-language Coq terms (objects of the dynamic22

type {A : Type & A}) to represent Coq terms in the template monad, as opposed to23

abstract syntax terms (Ast.term), makes extracting TemplateMonad programs impossi-24

ble. For example, consider the type of tmPrint, ∀ A, A → TemplateMonad unit. Under25

extraction, the value of type A will be extracted to an OCaml value of the extracted26

type corresponding to A, e.g., bool. This does not match the intended semantics of the27

template monad, however, because we wish to print the Coq term syntax (e.g., the28

Ast.term corresponding to this boolean).29

To address this problem, we define an extractable variant of the TemplateMonad30

which we call TM for the purposes of this presentation. Rather than using the (inlined)31

type {t:Type & t} to represent Coq terms, it instead uses the Ast.term type. Figure ??32

shows the constructors that changed between TM and TemplateMonad. In addition to the33

modified constructors, TM drops tmQuote, tmQuoteRec, tmUnqote, and tmUnquoteTyped, none34

of which make sense with the new representation of terms. For some types and terms,35

it would be possible to implement a conversion from term to some native OCaml term,36

but in general this is impossible, since the term type can reference axioms that have no37

corresponding value.38

The MetaCoq Project 49

Inductive TM : Type → Type B
| tmPrint : Ast.term → TM unit
| tmMsg : string → TM unit

| tmEval (red : reductionStrategy) (tm : Ast.term) : TM Ast.term
| tmDefinition (nm : ident) (type : option Ast.term) (term : Ast.term) : TM

kername
| tmAxiom (nm : ident) (type : Ast.term) : TM kername
| tmLemma (nm : ident) (type : Ast.term) : TM kername
| tmInferInstance (type : Ast.term) : TM (option Ast.term)
| ...

Fig. 4 Modified constructors in TM and TemplateMonad.

Definition f (x : nat) : TemplateMonad term B
tmQuote (x + (fun y : unit ⇒ x) tt).

Definition f_extractable (x : term) : Extractable.TM term B
tmReturn (tApp <%plus%>

[x, tApp (tLambda nAnon <%unit%> (lift 0 1 x)) [<%tt%>]]).

Fig. 5 Porting a program from the TemplateMonad to the extractable TM monad.

As a by-product of the phase separation, we also solve an additional problem. The1

TemplateMonad type lives in Prop (vs. Type) in order to get impredicativity and avoid2

universe inconsistency problems when manipulating terms of higher universes. This3

choice cannot work for the TM monad because terms of sort Prop are erased by extraction.4

So, the TM monad lives in Type. Further, because commands such as tmDefinition5

no longer take a Type parameter and instead manipulate the completely first-order6

datatype Ast.term (in Set), the universe attribute on TM will not place additional universe7

constraints on Gallina programs of type TM.8

Using the Phase Split Monad The phase split comes at the cost of some convenience.9

In the original TemplateMonad, we could write, tmDefinition "one" 1. In the phase split10

monad, we must construct the term representation of 1 explicitly. To ease this, we define11

a the <% t %> notation, inspired by MetaOCaml’s .< t >., which desugars to the quoted12

version of t using Coq’s tactics-in-terms feature. Using this feature, we can adapt the13

simple declaration above as tmDefinition "one" <% 1 %>.14

Things become slightly more complicated when the term to quote is built dynami-15

cally. For example, the following does not work: fun x y : Ast.term ⇒ tmDefinition "16

add_them" <% x + y %>. Currently, to achieve this, we must build the syntax directly:17

tApp <% plus %> (x :: y :: nil). This problem is exacerbated in the presence of func-18

tions and binders where users must still track the number of binders that terms cross19

and lift terms appropriately. Proper multi-stage languages, such as MetaOCaml, address20

this through a splicing operator where the above could be written .< .~x + .~x >..21

Here, the parser can traverse the term and implicitly add necessary lifting, for example,22

lifting the second occurrence of x in a splice such as .< .~x + (fun _ ⇒ .~x) tt>.. We23

leave implementing improved splicing to future work.24

50 Sozeau et al.

Limitations of the Phase Split Monad While the programs can be slightly more verbose,1

from a practical point of view, the phase split does not decrease the expressivity of the2

monad 10. In our use cases, our only use of tmUnquote and tmUnquoteTyped was to feed the3

result to tmPrint or one of the variants of tmDefinition because these commands took4

semantic values rather than syntactic ones. Since the TM monad distinguishes between5

the object- and the meta-language, these commands take values in the object-language,6

thus removing the need to unquote into the meta-language.7

Dealing with tmQuote is slightly more subtle. In our experience, most uses of tmQuote8

occur early in the monadic computation and can easily be done by the caller. The two9

programs in Figure 5 demonstrate how to translate programs to meet the constraints10

of the extractable monad. The first program (f) takes a nat, quotes it, and splices it11

into a term, which it returns. The second program implements essentially the same12

transformation in the extractable monad by requiring the caller pass the quoted version13

of the argument, e.g. by calling f_extractable <% 1 %> rather than f 1. One may,14

naturally, be weary of this transformation because the function may need to pattern15

match on the term itself in addition to quoting it. In this case, the argument would16

need to be duplicated, one holding the semantic value (of type nat) and the other17

holding the syntax (of type term). In practice, however, we find that doing this is quite18

rare. It can also be dangerous because pattern matching on stuck terms will cause the19

template monad interpretation to fail. In the extractable monad, errors of this sort20

are not possible since meta-language values, e.g. nat, have different types than their21

object-language counterparts, which would have type term.22

In general, we found that, in many instances, adapting plugin code simply required23

phase-splitting the top-level function. For example, a template program that might24

previously have taken an arbitrary value now takes a term, and the caller of the function25

performs the quoting on their side. Readers familiar with Template Haskell (Sheard26

and Jones, 2002b) will note that this style is also employed there.27

Performance Our largest use case for running plugins after extraction is lens11 gen-28

eration for Coq records. This plugin takes the fully qualified name of a record in29

the environment and defines a lens for each field of the record. A lens for a field of30

record can be used to project that field or update that field (while keeping the other31

fields constant). The plugin’s implementation invokes the tmQuoteInductive to get the32

definition of the record, computes the body and the type of the lens for each field, and33

then defines each of those lenses by using the tmMkDefinition command. Although in34

our verification work, we typically have records of only a few fields, to very roughly35

estimate the execution-time savings in general, we tested the lens plugin both with36

and without extraction on a record with 30 fields. The execution time was respectively37

0.774 second and 0.047 second: the extracted version ran at least 10 times faster. We38

observed more speedups on records with more fields.39

Comprehensive benchmarking of extracted plugins is left for future work: in particu-40

lar we plan to compare with the performance of MTac 2 (Kaiser et al., 2018) and LTac41

2 (Pédrot, 2019). In Gross et al. (2018), the (unextracted) Template-Coq reification42

machinery already compares favorably to all other options – tactic languages and43

type-class or canonical structure based solutions – for the very specific case of reification44

of arbitrary terms.45

10 One exception is with tmQuoteRec which requires recursion that can not be proved well-
founded in order to implement.
11 This is inspired by lenses in Haskell: http://lens.github.io

http://lens.github.io

The MetaCoq Project 51

6 Related Work and Future Work1

Meta-Programming is a whole field of research in the programming languages community,2

we will not attempt to give a detailed review of related work here. In contrast to most3

work on meta-programming, we provide a very rough interface to the object language:4

one can easily build ill-scoped and ill-typed terms in our framework, and staging is5

basic. However, with typing derivations we provide a way to verify meta-programs and6

ensure that they do make sense.7

The closest cousin of our work is the Typed Syntactic Meta-Programming (Devriese8

and Piessens, 2013) proposal in Agda, which provides a well-scoped and well-typed9

interface to a denotation function, that can be used to implement tactics by reflection.10

We could also implement such an interface, asking for a proof of well-typedness on top11

of the tmUnquoteTyped primitive of our monad.12

Intrinsically typed representations of terms in dependent type-theory is an area of13

active research. Most solutions are based on extensions of Martin-Löf Intensional Type14

Theory with inductive-recursive or quotient inductive-inductive types (Chapman, 2009;15

Altenkirch and Kaposi, 2016), therefore extending the meta-theory. Recent work on16

verifying soundness and completeness of the conversion algorithm of a dependent type17

theory (with natural numbers, dependent products and a universe) in a type theory18

with IR types (Abel et al., 2018) gives us hope that this path can nonetheless be taken19

to provide the strongest guarantees on our conversion algorithm. The intrinsically-typed20

syntax used there is quite close to our typing derivations.21

Another direction is taken by the Œuf certified compiler (Mullen et al., 2018),22

which restricts itself to a fragment of Coq for which a total denotation function can be23

defined, in the tradition of definitional interpreters advocated by Chlipala (2011). This24

setup should be readily accomodated by Template-Coq.25

The translation+plugin technique paves the way for certified translations and the26

last piece will be to prove correctness of such translations. By correctness we mean27

computational soundness and typing soundness (see Boulier et al. (2017)), and both can28

be stated in Template-Coq. Anand has made substantial attempts in this direction to29

prove, in Template-Coq, the computational soundness of a variant of parametricity30

providing stronger theorems for free on propositions (Anand and Morrisett, 2018).31

This included as a first step a move to named syntax that could be reused in other32

translations. Our long term goal is to leverage the translation+plugin technique to33

extend the logical and computational power of Coq using, for instance, the forcing34

translation (Jaber et al., 2016) or the weaning translation (Pédrot and Tabareau, 2017).35

The last direction of extension is to build higher-level tools on top of the syntax:36

the unification algorithm described in (Ziliani and Sozeau, 2017) is our first candidate.37

Once unification is implemented, we can look at even higher-level tools: elaboration38

from concrete syntax trees, unification hints like canonical structures and type class39

resolution, domain-specific and general purpose tactic languages. A key inspiration in40

this regard is the work of Malecha and Bengtson (2016) which implemented this idea41

on a restricted fragment of CIC.42

Acknowledgments43

This work is supported by the CoqHoTT ERC Grant 64399 and the NSF grants44

CCF-1407794, CCF-1521602, and CCF-1646417.45

52 Sozeau et al.

References1

Abel A, Öhman J, Vezzosi A (2018) Decidability of conversion for type theory in type2

theory. PACMPL 2(POPL):23:1–23:29, DOI 10.1145/3158111, URL http://doi.acm.3

org/10.1145/31581114

Altenkirch T, Kaposi A (2016) Type theory in type theory using quotient inductive types.5

ACM, New York, NY, USA, POPL ’16, pp 18–29, DOI 10.1145/2837614.2837638,6

URL http://doi.acm.org/10.1145/2837614.28376387

Anand A, Morrisett G (2018) Revisiting Parametricity: Inductives and Uniformity of8

Propositions. In: CoqPL’18, Los Angeles, CA, USA9

Anand A, Appel A, Morrisett G, Paraskevopoulou Z, Pollack R, Belanger10

OS, Sozeau M, Weaver M (2017) CertiCoq: A verified compiler for Coq.11

In: CoqPL, Paris, France, URL http://conf.researchr.org/event/CoqPL-2017/12

main-certicoq-a-verified-compiler-for-coq13

Anand A, Boulier S, Cohen C, Sozeau M, Tabareau N (2018) Towards Certified Meta-14

Programming with Typed Template-Coq. In: ITP 2018 - 9th Conference on Interactive15

Theorem Proving, Springer, Oxford, United Kingdom, LNCS, vol 10895, pp 20–39,16

DOI 10.1007/978-3-319-94821-8_2, URL https://hal.archives-ouvertes.fr/17

hal-0180968118

Annenkov D, Spitters B (2019) Towards a smart contract verification framework in coq.19

CoRR abs/1907.10674, URL http://arxiv.org/abs/1907.10674, 1907.1067420

Armand M, Grégoire B, Spiwack A, Théry L (2010) Extending Coq with Imperative21

Features and Its Application to SAT Verification. In: Kaufmann M, Paulson LC (eds)22

Interactive Theorem Proving, Springer, pp 83–9823

Avigad J, Mahboubi A (eds) (2018) Interactive Theorem Proving - 9th International24

Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018,25

Oxford, UK, July 9-12, 2018, Proceedings, Lecture Notes in Computer Science, vol26

10895, Springer, DOI 10.1007/978-3-319-94821-8, URL https://doi.org/10.1007/27

978-3-319-94821-828

Barras B (1999) Auto-validation d’un système de preuves avec familles inductives. Thèse29

de doctorat, Université Paris 7, URL http://pauillac.inria.fr/~barras/publi/30

these_barras.ps.gz31

Bernardy JP, Jansson P, Paterson R (2012) Proofs for free: Parametricity for dependent32

types. Journal of Functional Programming 22(2):107–15233

Boulier S, Pédrot PM, Tabareau N (2017) The next 700 syntactical models of type34

theory. In: CPP’17, Paris, France, ACM, pp 182–19435

Carette J, Farmer WM, Laskowski P (2018) HOL light QE. In: Avigad and Mahboubi36

(2018), pp 215–234, DOI 10.1007/978-3-319-94821-8_13, URL https://doi.org/37

10.1007/978-3-319-94821-8_1338

Chapman J (2009) Type Theory Should Eat Itself. Electronic Notes in Theoretical39

Computer Science 228:21 – 36, DOI https://doi.org/10.1016/j.entcs.2008.12.114,40

URL http://www.sciencedirect.com/science/article/pii/S157106610800577X,41

proceedings of LFMTP 200842

Chlipala A (2011) Certified Programming with Dependent Types. MIT Press43

Christiansen D, Brady E (2016) Elaborator reflection: Extending idris in idris. ICFP’1644

p 28445

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT46

press47

http://doi.acm.org/10.1145/3158111
http://doi.acm.org/10.1145/3158111
http://doi.acm.org/10.1145/3158111
http://doi.acm.org/10.1145/2837614.2837638
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
http://conf.researchr.org/event/CoqPL-2017/main-certicoq-a-verified-compiler-for-coq
https://hal.archives-ouvertes.fr/hal-01809681
https://hal.archives-ouvertes.fr/hal-01809681
https://hal.archives-ouvertes.fr/hal-01809681
http://arxiv.org/abs/1907.10674
1907.10674
https://doi.org/10.1007/978-3-319-94821-8
https://doi.org/10.1007/978-3-319-94821-8
https://doi.org/10.1007/978-3-319-94821-8
http://pauillac.inria.fr/~barras/publi/these_barras.ps.gz
http://pauillac.inria.fr/~barras/publi/these_barras.ps.gz
http://pauillac.inria.fr/~barras/publi/these_barras.ps.gz
https://doi.org/10.1007/978-3-319-94821-8_13
https://doi.org/10.1007/978-3-319-94821-8_13
https://doi.org/10.1007/978-3-319-94821-8_13
http://www.sciencedirect.com/science/article/pii/S157106610800577X

The MetaCoq Project 53

Devriese D, Piessens F (2013) Typed syntactic meta-programming. In: Proceedings1

of the 18th ACM SIGPLAN International Conference on Functional Programming,2

ACM, ICFP ’13, URL http://doi.acm.org/10.1145/2500365.25005753

Ebner G, Ullrich S, Roesch J, Avigad J, de Moura L (2017) A Metaprogramming4

Framework for Formal Verification. In: Proceedings of the 22st ACM SIGPLAN5

Conference on Functional Programming (ICFP 2017), ACM Press, Oxford, UK, pp6

34:1–34:297

Feferman S (2001) Typical ambiguity: Trying to have your cake and eat it too, invited8

lecture for the conference, One Hundred Years of Russell’s Paradox9

Forster Y, Kunze F (2016) Verified Extraction from Coq to a Lambda-Calculus.10

In: Coq Workshop 2016, URL https://www.ps.uni-saarland.de/~forster/11

coq-workshop-16/abstract-coq-ws-16.pdf12

Forster Y, Kunze F (2019) A Certifying Extraction with Time Bounds from Coq13

to Call-By-Value Lambda Calculus. In: Harrison J, O’Leary J, Tolmach A (eds)14

10th International Conference on Interactive Theorem Proving (ITP 2019), Schloss15

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, Leibniz International16

Proceedings in Informatics (LIPIcs), vol 141, pp 17:1–17:1917

Forster Y, Smolka G (2017) Weak call-by-value lambda calculus as a model of compu-18

tation in Coq. In: ITP 2017, Springer, pp 189–20619

Gross J, Erbsen A, Chlipala A (2018) Reification by parametricity - fast setup for20

proof by reflection, in two lines of ltac. In: Avigad and Mahboubi (2018), pp21

289–305, DOI 10.1007/978-3-319-94821-8_17, URL https://doi.org/10.1007/22

978-3-319-94821-8_1723

Herbelin H, Spiwack A (2013) The rooster and the syntactic bracket. In: Matthes R,24

Schubert A (eds) 19th International Conference on Types for Proofs and Programs,25

TYPES 2013, April 22-26, 2013, Toulouse, France, Schloss Dagstuhl - Leibniz-Zentrum26

fuer Informatik, LIPIcs, vol 26, pp 169–187, DOI 10.4230/LIPIcs.TYPES.2013.169,27

URL https://doi.org/10.4230/LIPIcs.TYPES.2013.16928

Jaber G, Lewertowski G, Pédrot PM, Sozeau M, Tabareau N (2016) The definitional29

side of the forcing. In: LICS’16, New York, NY, USA, pp 367–376, DOI 10.1145/30

2933575.2935320, URL http://doi.acm.org/10.1145/2933575.293532031

Jansen JM (2013) Programming in the λ-calculus: From Church to Scott and back. In:32

The Beauty of Functional Code, LNCS, vol 8106, Springer, pp 168–18033

Kaiser J, Ziliani B, Krebbers R, Régis-Gianas Y, Dreyer D (2018) Mtac2: typed tactics34

for backward reasoning in coq. PACMPL 2(ICFP):78:1–78:31, DOI 10.1145/3236773,35

URL https://doi.org/10.1145/323677336

Keller C, Lasson M (2012) Parametricity in an impredicative sort. CoRR abs/1209.6336,37

URL http://arxiv.org/abs/1209.6336, 1209.633638

Lasson M (2014) Canonicity of Weak ω-groupoid Laws Using Parametricity Theory. In:39

Proceedings of the 30th Conference on the Mathematical Foundations of Programming40

Semantics (MFPS XXX), DOI 10.1016/j.entcs.2014.10.01341

Malecha G, Bengtson J (2016) Extensible and efficient automation through reflective42

tactics. In: ESOP 2016, DOI 10.1007/978-3-662-49498-1_21, URL http://dx.doi.43

org/10.1007/978-3-662-49498-1_2144

Malecha GM (2014) Extensible proof engineering in intensional type theory. PhD thesis,45

Harvard University, URL http://gmalecha.github.io/publication/2015/02/01/46

extensible-proof-engineering-in-intensional-type-theory.html47

Mogensen TÆ (1992) Efficient self-interpretations in lambda calculus. J Funct Program48

2(3):345–36349

http://doi.acm.org/10.1145/2500365.2500575
https://www.ps.uni-saarland.de/~forster/coq-workshop-16/abstract-coq-ws-16.pdf
https://www.ps.uni-saarland.de/~forster/coq-workshop-16/abstract-coq-ws-16.pdf
https://www.ps.uni-saarland.de/~forster/coq-workshop-16/abstract-coq-ws-16.pdf
https://doi.org/10.1007/978-3-319-94821-8_17
https://doi.org/10.1007/978-3-319-94821-8_17
https://doi.org/10.1007/978-3-319-94821-8_17
https://doi.org/10.4230/LIPIcs.TYPES.2013.169
http://doi.acm.org/10.1145/2933575.2935320
https://doi.org/10.1145/3236773
http://arxiv.org/abs/1209.6336
1209.6336
http://dx.doi.org/10.1007/978-3-662-49498-1_21
http://dx.doi.org/10.1007/978-3-662-49498-1_21
http://dx.doi.org/10.1007/978-3-662-49498-1_21
http://gmalecha.github.io/publication/2015/02/01/extensible-proof-engineering-in-intensional-type-theory.html
http://gmalecha.github.io/publication/2015/02/01/extensible-proof-engineering-in-intensional-type-theory.html
http://gmalecha.github.io/publication/2015/02/01/extensible-proof-engineering-in-intensional-type-theory.html

54 Sozeau et al.

Mullen E, Pernsteiner S, Wilcox JR, Tatlock Z, Grossman D (2018) Œuf: minimizing the1

coq extraction TCB. In: Proceedings of CPP 2018, pp 172–185, DOI 10.1145/3167089,2

URL http://doi.acm.org/10.1145/31670893

Pédrot P, Tabareau N (2017) An effectful way to eliminate addiction to dependence.4

In: LICS’17, Reykjavik, Iceland, pp 1–12, DOI 10.1109/LICS.2017.8005113, URL5

https://doi.org/10.1109/LICS.2017.80051136

Pédrot PM (2019) Ltac2: Tactical warfare. CoqPL 20197

Reynolds JC (1983) Types, abstraction and parametric polymorphism. In: IFIP Congress,8

pp 513–5239

Russell B (1908) Mathematical logic as based on the theory of types. American Journal10

of Mathematics 30(3):222–262, DOI 10.2307/227270811

Sheard T, Jones SP (2002a) Template meta-programming for haskell. SIGPLAN12

Not 37(12):60–75, DOI 10.1145/636517.636528, URL http://doi.acm.org/10.1145/13

636517.63652814

Sheard T, Jones SP (2002b) Template meta-programming for haskell. In: Proceedings15

of the 2002 ACM SIGPLAN Workshop on Haskell, ACM, New York, NY, USA,16

Haskell ’02, pp 1–16, DOI 10.1145/581690.581691, URL http://doi.acm.org/10.17

1145/581690.58169118

Sozeau M (2007) Program-ing Finger Trees in Coq. ACM, New York, NY, USA, ICFP19

’07, pp 13–24, DOI 10.1145/1291151.1291156, URL http://doi.acm.org/10.1145/20

1291151.129115621

Sozeau M, Mangin C (2019) Equations Reloaded: High-Level Dependently-Typed22

Programming and Proving in Coq. PACMPL 3(ICFP):86–115, DOI 10.1145/23

3341690, URL http://www.irif.fr/~sozeau/research/publications/Equations_24

Reloaded-ICFP19.pdf25

Taha W, Sheard T (1997) Multi-stage programming with explicit annotations. ACM,26

New York, NY, USA, PEPM ’97, pp 203–217, DOI 10.1145/258993.259019, URL27

http://doi.acm.org/10.1145/258993.25901928

Wadler P (1989) Theorems for free! In: Functional Programming Languages and29

Computer Architecture, ACM Press, pp 347–35930

Van der Walt P, Swierstra W (2013) Engineering Proof by Reflection in Agda. In:31

Implementation and Application of Functional Languages, Springer32

Zaliva V, Sozeau M (2019) Reification of shallow-embedded DSLs in Coq with automated33

verification. In: CoqPL, Cascais, Portugal, URL http://www.crocodile.org/lord/34

vzaliva-CoqPL19.pdf35

Ziliani B, Sozeau M (2017) A Comprehensible Guide to a New Unifier for CIC Including36

Universe Polymorphism and Overloading. Journal of Functional Programming 27:e10,37

DOI 10.1017/S0956796817000028, URL http://www.irif.univ-paris-diderot.fr/38

~sozeau/research/publications/drafts/unification-jfp.pdf39

Ziliani B, Dreyer D, Krishnaswami NR, Nanevski A, Vafeiadis V (2015) Mtac: A Monad40

for Typed Tactic Programming in Coq. Journal of Functional Programming 25, DOI41

10.1017/S0956796815000118, URL https://doi.org/10.1017/S095679681500011842

http://doi.acm.org/10.1145/3167089
https://doi.org/10.1109/LICS.2017.8005113
http://doi.acm.org/10.1145/636517.636528
http://doi.acm.org/10.1145/636517.636528
http://doi.acm.org/10.1145/636517.636528
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691
http://doi.acm.org/10.1145/1291151.1291156
http://doi.acm.org/10.1145/1291151.1291156
http://doi.acm.org/10.1145/1291151.1291156
http://www.irif.fr/~sozeau/research/publications/Equations_Reloaded-ICFP19.pdf
http://www.irif.fr/~sozeau/research/publications/Equations_Reloaded-ICFP19.pdf
http://www.irif.fr/~sozeau/research/publications/Equations_Reloaded-ICFP19.pdf
http://doi.acm.org/10.1145/258993.259019
http://www.crocodile.org/lord/vzaliva-CoqPL19.pdf
http://www.crocodile.org/lord/vzaliva-CoqPL19.pdf
http://www.crocodile.org/lord/vzaliva-CoqPL19.pdf
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/drafts/unification-jfp.pdf
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/drafts/unification-jfp.pdf
http://www.irif.univ-paris-diderot.fr/~sozeau/research/publications/drafts/unification-jfp.pdf
https://doi.org/10.1017/S0956796815000118

	Introduction
	A First Example: A Plugin to Add a Constructor
	Departures from Coq theory
	Outline of the Paper

	A Formal Specification of Coq
	Reification of Terms
	Reification of environment
	Typing judgements
	Conversion, Cumulativity and Reduction
	Typing environments
	Universes
	Towards bootstrapping Coq

	The Template-Coq Plugin
	Basic commands
	Reification of Coq Commands

	Writing Coq plugins in Coq
	A Toy Example: A Plugin to Add a Constructor
	A Certified Version of the tauto Tactic
	The Program Translations Plugin
	Extraction to lambda-calculus

	Running plugins natively in OCaml
	Related Work and Future Work

