
Russell’s Metatheoretic Study - Notes

Matthieu Sozeau
LRI - Paris Sud - XI University

sozeau@lri.fr

16th July 2006

Abstract
We are working on the formalization of Russell’s type theory in the Coq proof assistant

[3]. The type system of Russell is based on the Calculus of Constructions with Σ-types
(dependent sums), extended by an equivalence on types which subsumes β-conversion. The
extension permits to identify types and subsets based on them in a manner similar to the
Predicate Subtyping feature of PVS.

We are aiming at a complete proof of Russell’s metatheoretic properties (structural prop-
erties, Subject Reduction, maybe Strong Normalization), the refining steps which led us to
the algorithmic system and the corresponding typing algorithm and also the correctness of an
interpretation from Russell to the Calculus of Inductive Constructions with metavariables.

We started the development using the formalization of the Calculus of Constructions by
Bruno Barras [2]. We kept the standard de Bruijn encoding for variable bindings and defined
our judgements using dependent inductive predicates. This alone causes some problems for the
faithful formalization of the paper results. The proofs offer several other technical difficulties
including:

• Elimination of transitivity in a system with an untyped type conversion relation.
• Subject Reduction, which is not directly provable for the declarative system. Here we

adapted the technique developed by Robin Adams [1]. It includes a new term algebra,
with associated reduction operations and a new type system for which we have to prove
metatheoretic properties.

• Correction of the interpretation: the target system include metavariables, introducing a
second, unusual kind of variable binding.

Organization of the Coq proof

The proof is developed in the Lambda namespace. At the root we have definition of the term language
Lambda.Terms which is a lambda calculus with dependent products, sums and a distinguished subset
type with no introduction or elimination constructs. In LiftSubst we have lemmas on substitution
and lifting. The definitions and proofs about reduction and conversion including Church-Rosser for
βπ reduction are in the remaining modules.

The first type system is Lambda.CCSum, the Calculus of Constructions enriched with dependent
sums. All the metatheory up to Subject Reduction and Unicity has been done for this system,
simply adapting the work of Bruno Barras.

Then we have two versions of the Russell type system. The Lambda.JRussell directory
contains a definition of Russell with judgemental equality and a coercion relation with transitivity

1

and symetry built-in. It is the most declarative, and thus the clearest presentation of Russell,
however we can’t prove Subject Reduction for this system directly. We proved basic metatheory
for this system up to validity and unicity of sorting, which we can transpose to tposr easily.

The modules in Lambda.Russell define a more algorithmical version of the Russell type
system. This version uses an untyped conversion relation and an already refined coercion algorithm
(without transitivity).

Finally, one can find in Lambda.Meta modules the metatheorems about those systems, or more
precisely the equivalence proofs.

The proof of Subject Reduction

Directly proving Subject Reduction for our system is not possible because of the enriched equiv-
alence we use. Indeed, we use a typed equivalence relation, hence we cannot use the same style
of proof as the one for the Calculus of Constructions. In the later case, when proving subject
reduction at the application case, with reduction being β, we have:

Γ ` (λx : A.M) : Πx : B.C Γ ` N : B

Γ ` (λx : A.M) N : C[N/x]

We need to prove Γ ` M [N/x] : C[N/x].
By inversion for dependent products, we have (s, s′) ∈ A so that

Γ ` A : s

Γ, x : A ` D : s′

Γ, x : A ` M : D

and Πx : B.C ≡βπ Πx : A.D (Γ ` Πx : B.C = Πx : A.D : s′ for typed equivalence). By the
Church-Rosser theorem for ≡βπ we get A ≡βπ B and C ≡βπ D. Hence we have Γ ` N : A and
Γ, x : A ` M : C by conversion. By substitution we can then derive Γ ` M [N/x] : C[N/x].

What goes wrong in the typed version ? We would need to prove the following lemma (injectivity
of pi):

Γ ` Πx : A.B = Πx : C.D : s′ ⇒ ∃s,Γ ` A = C : s ∧ Γ, x : A ` B = D : s ∧ (s, s′) ∈ A

However, this is not provable as we can use a transitivity rule in the definition of typed equivalence.
Here the premise can have the form Γ ` Πx : A.B = X0 ∧ . . .∧Xn = Πx : C.D : s and we can’t say
anything about the X’s yet, in particular we cannot prove that they reduce to products. Hence
we need to devise a new, equivalent system for which subject reduction is provable. We can do
that using a typed parallel one step reduction relation (tposr) on labelled terms which generates
the typed equivalence relation on the original terms. The formalization as a reduction relation,
along with its proof of Church-Rosser eliminates transitivity and permits to prove Uniqueness of
Types and Injectivity of products (and sums in our case). It is then possible to prove Subject
Reduction for this system and transpose this result to the judgemental equality system by virtue
of the equivalence of the two systems.

2

Proof sketch

The technique of using tposr is due to Robin Adams work on proving the equivalence of judge-
mental equality (or typed equivalence) and untyped conversion presentations of Pure Type Systems
[1]. We extended this technique to an enriched equivalence relation which we call coercion (denoted
by 3). Coercion includes the usual equivalence relation generated by the reduction rules of the
system (β and π in our case) and extends it with custom equality rules. In the Russell system,
we added the following rules:

Γ ` U 3 V : Set Γ, x : V ` P : Prop
3-Proof

Γ ` U 3 { x : V | P } : Set

Γ ` U 3 V : Set Γ, x : U ` P : Prop
3-Subset

Γ ` { x : U | P }3 V : Set

The following module is the definition of the Russell system with judgemental equality in
Coq.

Reserved Notation ”G ` T = U : s” (at level 70, T, U, s at next level).
Reserved Notation ”G ` T 3 U : s” (at level 70, T, U, s at next level).
Reserved Notation ”G ` T : U ” (at level 70, T, U at next level).

Definition sum sort s1 s2 s3 :=
(s1 = set ∧ s2 = set ∧ s3 = set) ∨
(s1 = prop ∧ s2 = prop ∧ s3 = prop).

Inductive coerce : env → term → term → sort → Prop :=
| coerce conv : ∀ e A B s, e ` A = B : Srt s → e ` A 3 B : s

| coerce weak : ∀ e A B s, e ` A 3 B : s →
∀ T s’, e ` T : Srt s’ → (T :: e) ` lift 1 A 3 lift 1 B : s

| coerce prod : ∀ e A B A’ B’,
∀ s, e ` A’ 3 A : s →
e ` A’ : Srt s → e ` A : Srt s →
∀ s’, (A’ :: e) ` B 3 B’ : s’ →
A :: e ` B : Srt s’ → A’ :: e ` B’ : Srt s’ →
e ` (Prod A B) 3 (Prod A’ B’) : s’

| coerce sum : ∀ e A B A’ B’,
∀ s, e ` A 3 A’ : s →
e ` A’ : Srt s → e ` A : Srt s →
∀ s’, (A :: e) ` B 3 B’ : s’ →
A :: e ` B : Srt s’ → A’ :: e ` B’ : Srt s’ →
∀ s”, sum sort s s’ s” → sum sort s s’ s” →

3

e ` (Sum A B) 3 (Sum A’ B’) : s”

| coerce sub l : ∀ e U P U’,
e ` U 3 U’ : set →
e ` U : Srt set → e ` U’ : Srt set →
U :: e ` P : Srt prop →
e ` Subset U P 3 U’ : set

| coerce sub r : ∀ e U U’ P,
e ` U 3 U’ : set →
e ` U : Srt set → e ` U’ : Srt set →
U’ :: e ` P : Srt prop →
e ` U 3 (Subset U’ P) : set

| coerce sym : ∀ e U V s, e ` U 3 V : s → e ` V 3 U : s

| coerce trans : ∀ e A B C s,
e ` A 3 B : s → e ` B 3 C : s → e ` A 3 C : s

where ”G ` T 3 U : s” := (coerce G T U s)

with jeq : env → term → term → term → Prop :=
| jeq weak : ∀ e M N A, e ` M = N : A →
∀ B s, e ` B : Srt s →
(B :: e) ` lift 1 M = lift 1 N : lift 1 A

| jeq prod : ∀ e U V U’ V’ s1 s2,
e ` U = U’ : Srt s1 → U :: e ` V = V’ : Srt s2 →
e ` Prod U V = Prod U’ V’ : Srt s2

| jeq abs : ∀ e A A’ s1, e ` A = A’ : Srt s1 →
∀ B s2, (A :: e) ` B : Srt s2 →
∀ M M’, (A :: e) ` M = M’ : B →
e ` Abs A M = Abs A’ M’ : (Prod A B)

| jeq app : ∀ e A B M M’, e ` M = M’ : (Prod A B) →
∀ N N’, e ` N = N’ : A →
e ` App M N = App M’ N’ : subst N B

| jeq beta : ∀ e A s1, e ` A : Srt s1 →
∀ B s2, (A :: e) ` B : Srt s2 →
∀ M, (A :: e) ` M : B →
∀ N, e ` N : A →
e ` App (Abs A M) N = subst N M : subst N B

4

| jeq sum : ∀ e A A’ s1, e ` A = A’ : Srt s1 →
∀ B B’ s2, (A :: e) ` B = B’ : Srt s2 →
∀ s3, sum sort s1 s2 s3 →
e ` Sum A B = Sum A’ B’ : Srt s3

| jeq pair : ∀ e A A’ s1, e ` A = A’ : Srt s1 →
∀ B B’ s2, (A :: e) ` B = B’ : Srt s2 →
∀ s3, sum sort s1 s2 s3 →
∀ u u’, e ` u = u’ : A →
∀ v v’, e ` v = v’ : subst u B →
e ` Pair (Sum A B) u v = Pair (Sum A’ B’) u’ v’ : Sum A B

| jeq pi1 : ∀ e t t’ A B, e ` t = t’ : Sum A B →
e ` Pi1 t = Pi1 t’ : A

| jeq pi1 red : ∀ e A s1, e ` A : Srt s1 →
∀ B s2, (A :: e) ` B : Srt s2 →
∀ s3, sum sort s1 s2 s3 →
∀ u, e ` u : A → ∀ v, e ` v : subst u B →
e ` Pi1 (Pair (Sum A B) u v) = u : A

| jeq pi2 : ∀ e t t’ A B, e ` t = t’ : Sum A B →
e ` Pi2 t = Pi2 t’ : subst (Pi1 t) B

| jeq pi2 red : ∀ e A s1, e ` A : Srt s1 →
∀ B s2, (A :: e) ` B : Srt s2 →
∀ s3, sum sort s1 s2 s3 →
∀ u, e ` u : A → ∀ v, e ` v : subst u B →
e ` Pi2 (Pair (Sum A B) u v) = v : subst u B

| jeq subset : ∀ e A A’, e ` A = A’ : Srt set →
∀ B B’, (A :: e) ` B = B’ : Srt prop →
e ` Subset A B = Subset A’ B’ : Srt set

| jeq refl : ∀ e M A, e ` M : A → e ` M = M : A

| jeq sym : ∀ e M N A, e ` M = N : A → e ` N = M : A

| jeq trans : ∀ e M N P A, e ` M = N : A → e ` N = P : A → e ` M = P : A

| jeq conv : ∀ e M N A B s, e ` M = N : A → e ` A 3 B : s → e ` M = N : B

where ”G ` T = U : s” := (jeq G T U s)

with typ : env → term → term → Prop :=

5

| type prop : nil ` (Srt prop) : (Srt kind)
| type set : nil ` (Srt set) : (Srt kind)
| type var :
∀ e T s, e ` T : Srt s → (T :: e) ` (Ref 0) : (lift 1 T)
| type weak :
∀ e t T, e ` t : T → ∀ U s, e ` U : Srt s →
(U :: e) ` lift 1 t : lift 1 T
| type abs :
∀ e T s1,
e ` T : (Srt s1) →
∀ M (U : term) s2,
(T :: e) ` U : (Srt s2) →
(T :: e) ` M : U →
e ` (Abs T M) : (Prod T U)
| type app :
∀ e v (V : term), e ` v : V →
∀ u (Ur : term), e ` u : (Prod V Ur) →
e ` (App u v) : (subst v Ur)

| type pair :
∀ e (U : term) s1, e ` U : (Srt s1) →
∀ u, e ` u : U →
∀ V s2, (U :: e) ` V : (Srt s2) →
∀ v, e ` v : (subst u V) →
∀ s3, sum sort s1 s2 s3 →
e ` (Pair (Sum U V) u v) : (Sum U V)

| type prod :
∀ e T s1,
e ` T : (Srt s1) →
∀ (U : term) s2,
(T :: e) ` U : (Srt s2) →
e ` (Prod T U) : (Srt s2)

| type sum :
∀ e T s1,
e ` T : (Srt s1) →
∀ (U : term) s2,
(T :: e) ` U : (Srt s2) →
∀ s3, sum sort s1 s2 s3 →
e ` (Sum T U) : Srt s3

| type subset :
∀ e T, e ` T : (Srt set) →
∀ (U : term), (T :: e) ` U : (Srt prop) →

6

e ` (Subset T U) : (Srt set)

| type pi1 :
∀ e t U V, e ` t : (Sum U V) →
e ` (Pi1 t) : U

| type pi2 :
∀ e t U V, e ` t : (Sum U V) →
e ` (Pi2 t) : (subst (Pi1 t) V)

| type conv :
∀ e t (U V : term),
e ` t : U →
∀ s, e ` U 3 V : s →
e ` t : V

where ”G ` T : U ” := (typ G T U).

The proof works as follows:

tposr system

We define a tposr system on labelled terms. Here follows the corresponding Coq definitions
(Lambda.TPOSR.Types).

Reserved Notation ”G ` T → U : s” (at level 70, T, U, s at next level).

Definition sum sort s1 s2 s3 :=
(s1 = set ∧ s2 = set ∧ s3 = set) ∨
(s1 = prop ∧ s2 = prop ∧ s3 = prop).

Coercion Srt l : sort > − > lterm.

Reserved Notation ”G ` T ' U : s” (at level 70, T, U, s at next level).
Reserved Notation ”G ` T 3 U : s” (at level 70, T, U, s at next level).

Inductive tposr wf : lenv → Prop :=
| wf nil : tposr wf nil
| wf cons : ∀ G A s, G ` A → A : s → tposr wf (A :: G)

with tposr : lenv → lterm → lterm → lterm → Prop :=

7

| tposr var : ∀ e, tposr wf e →
∀ n T, item llift T e n → e ` (Ref l n) → (Ref l n) : T

| tposr set : ∀ e, tposr wf e → e ` set → set : kind

| tposr prop : ∀ e, tposr wf e → e ` prop → prop : kind

| tposr prod : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
e ` Prod l A B → Prod l A’ B’ : s2

| tposr abs : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ M M’, (A :: e) ` M → M’ : B →
e ` Abs l A M → Abs l A’ M’ : (Prod l A B)

| tposr app : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B 3 B’ : s2 →
∀ M M’, e ` M → M’ : (Prod l A B) →
∀ N N’, e ` N → N’ : A →
e ` App l B M N → App l B’ M’ N’ : lsubst N B

| tposr beta : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ M M’, (A :: e) ` M → M’ : B →
∀ N N’, e ` N → N’ : A →
e ` App l B (Abs l A M) N → lsubst N’ M’ : lsubst N B

| tposr conv : ∀ e M N A, e ` M → N : A →
∀ B s, e ` A 3 B : s →
e ` M → N : B

| tposr subset : ∀ e A A’, e ` A → A’ : set →
∀ B B’, (A :: e) ` B → B’ : prop →
e ` Subset l A B → Subset l A’ B’ : set

| tposr sum : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ s3, sum sort s1 s2 s3 →
e ` Sum l A B → Sum l A’ B’ : s3

| tposr pair : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ s3, sum sort s1 s2 s3 →

8

∀ u u’, e ` u → u’ : A →
∀ v v’, e ` v → v’ : lsubst u B →
e ` Pair l (Sum l A B) u v → Pair l (Sum l A’ B’) u’ v’ : Sum l A B

| tposr pi1 : ∀ e A A’ s1, e ` A → A : s1 → e ` A 3 A’ : s1 →
∀ B B’ s2, (A :: e) ` B 3 B’ : s2 →
∀ s3, sum sort s1 s2 s3 →
∀ t t’, e ` t → t’ : Sum l A B →
e ` Pi1 l (Sum l A B) t → Pi1 l (Sum l A’ B’) t’ : A

| tposr pi1 red : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ s3, sum sort s1 s2 s3 →
∀ u u’ v v’, e ` Pair l (Sum l A B) u v → Pair l (Sum l A’ B’) u’ v’ : Sum l A B →
∀ A”, e ` A” → A” : s1 → e ` A” 3 A : s1 →
∀ B”, A” :: e ` B” 3 B : s2 →
e ` Sum l A” B” 3 Sum l A B : s3 →
e ` Pi1 l (Sum l A” B”) (Pair l (Sum l A B) u v) → u’ : A”

| tposr pi2 : ∀ e A A’ s1, e ` A → A : s1 → e ` A 3 A’ : s1 →
∀ B B’ s2, (A :: e) ` B 3 B’ : s2 →
∀ s3, sum sort s1 s2 s3 →
∀ t t’, e ` t → t’ : Sum l A B →
e ` Pi2 l (Sum l A B) t → Pi2 l (Sum l A’ B’) t’ : lsubst (Pi1 l (Sum l A B) t) B

| tposr pi2 red : ∀ e A A’ s1, e ` A → A’ : s1 →
∀ B B’ s2, (A :: e) ` B → B’ : s2 →
∀ s3, sum sort s1 s2 s3 →
∀ u u’ v v’,
e ` Pair l (Sum l A B) u v → Pair l (Sum l A’ B’) u’ v’ : Sum l A B →
∀ A”, e ` A” → A” : s1 → e ` A” 3 A : s1 →
∀ B”, A” :: e ` B” 3 B : s2 →
e ` Sum l A” B” 3 Sum l A B : s3 →
e ` Pi2 l (Sum l A” B”) (Pair l (Sum l A B) u v) → v’ : lsubst (Pi1 l (Sum l A” B”) (Pair l
(Sum l A B) u v)) B”

where ”G ` T → U : s” := (tposr G T U s)

with tposr eq : lenv → lterm → lterm → sort → Prop :=
| tposr eq tposr : ∀ e X Y s, e ` X → Y : s → e ` X ' Y : s
| tposr eq sym : ∀ e X Y s, e ` X ' Y : s → e ` Y ' X : s
| tposr eq trans : ∀ e W X Y s, e ` W ' X : s → e ` X ' Y : s → e ` W ' Y : s

where ”G ` T ' U : s” := (tposr eq G T U s)

9

with tposr coerce : lenv → lterm → lterm → sort → Prop :=
| tposr coerce conv : ∀ e A B s, e ` A ' B : s → e ` A 3 B : s

| tposr coerce prod : ∀ e A B A’ B’,
∀ s, e ` A’ 3 A : s →
e ` A’ → A’ : s → e ` A → A : s →
∀ s’, (A’ :: e) ` B 3 B’ : s’ →
A :: e ` B → B : s’ → A’ :: e ` B’ → B’ : s’ →
e ` (Prod l A B) 3 (Prod l A’ B’) : s’

| tposr coerce sum : ∀ e A B A’ B’,
∀ s, e ` A 3 A’ : s →
e ` A’ → A’ : s → e ` A → A : s →
∀ s’, (A :: e) ` B 3 B’ : s’ →
A :: e ` B → B : s’ → A’ :: e ` B’ → B’ : s’ →
∀ s”, sum sort s s’ s” →
e ` (Sum l A B) 3 (Sum l A’ B’) : s”

| tposr coerce sub l : ∀ e U P U’,
e ` U 3 U’ : set →
e ` U → U : set → e ` U’ → U’ : set →
U :: e ` P → P : prop →
e ` Subset l U P 3 U’ : set

| tposr coerce sub r : ∀ e U U’ P,
e ` U 3 U’ : set →
e ` U → U : set → e ` U’ → U’ : set →
U’ :: e ` P → P : prop →
e ` U 3 (Subset l U’ P) : set

| tposr coerce sym : ∀ e U V s, e ` U 3 V : s → e ` V 3 U : s

| tposr coerce trans : ∀ e A B C s,
e ` A 3 B : s → e ` B 3 C : s → e ` A 3 C : s

where ”G ` T 3 U : s” := (tposr coerce G T U s).

Lemma wf tposr : ∀ e M N T, e ` M → N : T → tposr wf e.

Reserved Notation ”G ` M →+ N : B” (at level 70, M, N, B at next level).

Inductive tposrp : lenv → lterm → lterm → lterm → Prop :=
| tposrp tposr : ∀ e X Y Z, e ` X → Y : Z → e ` X →+ Y : Z
| tposrp trans : ∀ e W X Y Z, e ` W →+ X : Z → e ` X →+ Y : Z → e ` W →+ Y : Z

10

where ”G ` M →+ N : B” := (tposrp G M N B).

Definition tposr term G M A := ∃ M’, G ` M → M’ : A.

Lemma tposr tposr term : ∀ G M M’ A, tposr G M M’ A → tposr term G M A.

We add labels at applications and projections. Applications are annoted with the codomain of
their function, for example, in app(x)B(M N), we suppose that M can be typed with a product
type of the form Πx : .B. Projections are annotated with their full domain, e.g in piΣx:A.B(t), we
suppose that t can be typed with the sum type Σx : A.B. The reduction associated with labelled
terms is the same as for unlabelled ones, plus reduction on labels. On the other hand, in the tposr
relation, we allow coercion of type labels at will. Indeed an application of type B can be seen as
an object of type B′ if they are coercible.

We prove the basic metatheory of the system, including thinning (Lambda.TPOSR.Thinning),
substituion (Lambda.TPOSR.Substitution) and substituion of tposr derivations (Lambda.TPOSR.SubstitutionTPOSR).
Most proofs use mutual induction on the typing, well-formedness of contexts, equivalence relation
and coercion relation derivations and are straightforward. However, much care must be taken in
the staging of proofs. We denote by Γ ` J any of the four judgements and use R to range over →
(reduction), ' (equivalence) and 3 (coercion). We were able to complete these proofs by following
this order:

1. First, proving left reflexivity: If Γ ` t → t′ : T then Γ ` t → t : T

2. Then a preliminary form of context coercion: If Γ, x : A,∆ ` J and Γ ` A 3 B : s with
Γ ` A → A : s and Γ ` B → B : s then Γ, x : B, ∆ ` J .

3. Then substitution: if Γ, x : U,∆ ` J and Γ ` u → u : U then Γ,∆[u/x] ` J [u/x].

4. Then a preliminary form of substitution of tposr derivations: If Γ, x : U,∆ ` t R t′ : T and
Γ ` u → u′ : U with Γ ` u′ → u′ : U then Γ,∆[u/x] ` t[u/x] R t′[u′/x] : T [u/x].

5. Then we can prove right reflexivity: If Γ ` t R t′ : T then Γ ` t′ R t′ : T

After proving right reflexivity we can remove the side conditions in the statements of context
coercion and substitution.

Once done with this we can prove generation lemmas for the tposr judgement. They are
used to prove validity: if Γ ` t → t : T then T = s for s ∈ S or there exists s ∈ S so that
G ` T → T : s. Once we have validity we just need to prove we have functionality of types to get
uniqueness of types. Functionality says that types with equivalent components are equivalent. For
example, functionality of pi is the property: if Γ ` A ' B : s1 and Γ, x : A ` C ' D : s2 then
Γ ` Πx : A.C ' Πx : B.D : s2.

We can then prove uniqueness of types: Γ ` t → ? : T and Γ ` t → ? : U then T = U = Type or
there exists a sort s so that Γ ` T 3U : s. This is were labels are needed, indeed at the application
case, in the original system we have the derivations:

Γ ` M : Πx : A.C Γ ` N : A
Γ ` M N → ? : C[N/x]

11

Γ ` M : Πx : B.D Γ ` N : B
Γ ` M N → ? : D[N/x]

By induction hypothesis we have Γ ` Πx : A.C 3 Πx : B.D : s for some s. However we cannot
deduce yet that it implies Γ, x : B ` C 3 D : s, as this requires injectivity of products which we
can’t prove, just like for the subject reduction proof. If we add labels we have:

Γ ` M : Πx : A.C Γ ` N : A
Γ ` app(x)E(M N) → ? : C[N/x]

Γ ` M : Πx : B.D Γ ` N : B
Γ ` app(x)E(M N) → ? : D[N/x]

Generation gives us the addidional hypothesis that Γ ` E[N/x] 3 C[N/x] : s and Γ ` E[N/x] 3
D[N/x], hence we are able to complete the proof. The same technique permits to prove uniqueness
of types for projections.

Now that we have uniqueness of types, we can prove a Church-Rosser property for tposr: If
Γ ` t → u : U and Γ ` t → v : V then there exists t′ so that

Γ ` u → t′ : U

Γ ` u → t′ : V

Γ ` v → t′ : U

Γ ` v → t′ : V

The proof is by induction on the sum of the depth of the two derivations (Lambda.TPOSR.-
ChurchRosserDepth).

As a corrolary we get (Lambda.TPOSR.ChurchRosser): If Γ ` t ' u : s then there exists x so
that Γ ` t →+

βπ x : s and Γ ` u →+
βπ x : s.

It is then easy to prove injectivity of products and sums using a similar argument as the one for
untyped conversion : if Γ ` Πx : A.C ' Πx : B.D : s then there exists x, Γ ` Πx : A.C →+

βπ x : s

and Γ ` Πx : B.D →+
βπ x : s. So we can derive that x ≡ Πx : E.F for some E,F and there exists

s′ so that Γ ` A ' E ' C : s1, and Γ, x : B ` C ' F ' D : s.
The story doesn’t ends here for injectivity as we have enriched the equivalence with a coercion

system, so we need to prove a similar property for this system. Again this is not a trivial matter
because we have a transitivity rule in this system which causes the same problem as for the usual
equivalence. What we need to do is prove elimination of transitivity for the coercion system. The
proof is again by induction on the depths of the two coercion derivations from which we build one
(Lambda.TPOSR.CoercionDepth). Then we are able to prove injectivity of products and sums with
respect to coercion (Lambda.TPOSR.Injectivity): If Γ ` Πx : A.C 3 Πx : B.D : s then there
exists s′ so that Γ ` B 3 C : s′ and Γ, x : B ` C 3 D : s.

Once we have injectivity for our type constructors we can easily prove subject reduction for the
tposr system.

12

Translation to and from Russell

To prove the equivalence of the tposr system and the original one, we need to show properties
on the unlabelling of terms (denoted by the | | function) (Lambda.TPOSR.Unlab). In this module,
apart from easy properties of commutation of substitution, lifting and unlabelling, we show that
labelled reductions entail reductions on the unlabelled terms and vice-versa: If |t′| →βπ u, then
there exists u′, |u′| = u and t′ →βπ u′.

Then the easy way, from tposr to Russell (Lambda.Meta.TPOSR JRussell, Lambda.Meta.-
TPOSR Russell), is proved by a simple induction on derivations: If Γ ` t → t′ : T then |Γ| ` |t| : |T |
and |Γ| ` |t′| : |T |.

The other way needs another lemma: stated simply, we need to show that if two typable
labelled terms have syntaxically equal translates, then they have a common reduct and coercible
types (Lambda.TPOSR.UnlabConv). Once armed with this result and its extension to contexts we can
prove that unlabelling is complete with respect to the original system (Lambda.Meta.Russell TPOSR),
that is: If Γ ` t : T then there exists Γ′, t′ and T ′ so that |Γ′| = Γ, |t′| = t and T ′ = |T |, with
|Γ′| ` |t′| : |T ′|.

It is then possible to prove subject reduction for the original system: If Γ ` t : T and t →βπ u
then Γ ` u : T (Lambda.Meta.SubjectReduction).

First we use the last lemma to go in tposr, then we translate the unlabelled reduction ta
labelled one: t′ →βπ u′ with |u′| = u. We need just apply subject reduction for tposr and go back
to Russell.

References

[1] Adams, R. Pure Type Systems with Judgemental Equality. Journal of Functional Programming
16 (2006), 219–246. http://www.cs.rhul.ac.uk/~robin/ptseq8.ps.gz.

[2] Barras, B. Coq en coq. Rapport de Recherche 3026, INRIA, Oct. 1996.

[3] Sozeau, M. Russell Metatheoretic Study in Coq, experimental development, 2006. http:
//www.lri.fr/~sozeau/research/russell.en.html.

13

